SRI RAAJA RAAJAN

COLLEGE OF ENGINEERING AND TECHNOLOGY
(Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE FILE

NAME : V.MANJU
DESIGNATION : ASSISTANT PROFESSOR
DEPARTMENT : CSE

SUB. CODE : CS8501

SUBJECT NAME : TOC

EVEN SEMESTER : 2021-22

o1 AR M

SRI RAAJA RAAJAN

COLLEGE OF ENGINEERING AND TECHNOLOGY
(Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai)

WILLINGNESS REPORT

From

Mrs. V. Manju,
Asst. Professor,
Department of computer science and Engineering,
SRRCET
Karaikudi-630301
TO
The Principal,
SRRCET,
Karaikudi-630301
Sir/ Madam,
Sub: Willingness Report for Subject: - reg,

I hereby express my willingness to handle the following subject in the following
order of priority.

S.NO Name of the Subject YEAR Reason for Selection
1 CS8501 — THEORY OF COMPUTATION m Interested
Thanking You o

Date: {0 .0 9. 2‘

= NCIPAL™
= Raaja Ragjan Coliege of Enct: ~
AeiaNaiinipudur, Karailkud - ¢l 301

Rivagamgsii Diist. Temil Nz

SRI RAAJA RAAJAN

COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi & Affiliated to Anna University)

146 /4B1, Amaravathi Village, Fax :04565-234430
Amaravathipudur (Po.), Mobile : 73737 11343, 73737 11333
Karaikudi — 630 301. E-mail : srrcet2010@gmail.com

Ph : 04565 —234230 /326132 Website: www.sriraajaraajan.in

Date :

Ciyptograph y&
Network Security

Theory of
! Computation —
CS8501

‘PRINCIPAL |
ajan College of Engy. & B8
ipudur, Kgra\knd' - =

(I

Sri Raala Ra
Amaravath

Trust Office : No. 24/63, T.T. Nagar Church 3" Street, Opp. to Golden Singar Hotel, Karaikudi — 630 001.
Ph : 04565 — 234230, Mobile : 73737 11343, 73737 11339,73737 11322

SRI RAAJA RAAJAN

»y COLLEGE OF ENGINEERING AND TECHNOLOGY
> \(Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai)

146/14B1, Amaravathi Village, Amaravathiputhur Post,

Karaikudi — 630 301, Sivagangai Dt, Tamil Nadu
Website : www.sriraajaraajan.in, E-mail : srrcet2010@gmail.com, Ph: 04565-234230

CIRCULAR

DATE :10.09.2021

Intimation of course allotment for faculties in the Department of Computer Science
and Engineering during ODD Semester for B.E., Computer Science and Engineering.

NAME OF THE TITLE OF THE
S.NO. FACULTY COURSE COURSE CODE | YEAR & CLASS
Cryptography and
Network Security CS8792 IV CSE
1. V.Manju, Assistant
Professor
Theory of CS8501 Il CSE
Computation
Note: Faculties are asked to follow the syllabus issued by Anna University, Chennai.
Copy to:
1. The HoD
2. All the faculties of CSE Dept.
3. File Copy.
)

PRINCIPAL

Sri Raaja Raajan Coflege of Engg
. hmaravathtpudur, Karaikudi - 630 301

& Tech.,

.. Sivagangai Dist. Tamil Nady

http://www.sriraajaraajan.in/
mailto:srrcet2010@gmail.com

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
ACADEMIC YEAR-2020-2021

TIME TABLE
I 1 111 v \Y VI VII
DAY
9.30-10.20 | 10.20-11.10 11.20- 12.10-1.00 1.35-220 | 2.20-3.05 | 3.15-4.00
12.10
TOC
MONDAY
TOC TOC
TUESDAY
TOC BREAK LUNCH
WEDNESDAY
TOC TOC
THURSDAY
TOC

ae o T PRINCIPAL
PRENCIPAL. i Raaja Raajan College of Ep-

- rravathipudur, Karajkyei
Vgethen aj Pist, Tan

MASTER TIME TABLE

HOURS I 1] 11 v V VI VII
i CLASS | 9.30-10.20 | 1920-11.10 1120- | 12.10-1.00 1.35-2.20 | 2.20-3.05 3.15-4.00
12.10
YR OOPS DS DM DM CE DS LAB DS LAB
MONDAY 11 YR CN OO0AD APC 00AD TOC MPMC ANT
IV YR HCI cc CNS SPM cc CNS POM
I YR 0OOPS CE DS OOPS DS DM DM
TUESDAY 1T YR TOC APC & | ooap TOC o MPMC LAB) MPMC LAB
= - en
IV YR HCI POM d CNS HM 2 HCI SPM < CNS
I YR DM DPSD = OOPS LAB % OOPS DS % CE
o
Il YR TOC 00AD | Z | APC CN g CN LAB & CN LAB
WEDNESDAY et = &
IV YR SECURITY LAB = HM SPM e CNS POM
I YR DS CE DM DM OOPS OOPS CE
THURSDAY I YR TOC TOC ANT ANT OOAD APC MPMC
IV YR cC POM SPM CNS HM SPM HCI
DIGITAL DIGITAL
I YR 00PS DS CE DM DPSD e LB
FRIDAY I YR ANT OOAD APC MPMC TOC CN LAB CN LAB
SPM CNS HCI | HM CC LAB LIB
o e PRINCIPAL
Heo PRﬂ? Raajan College of En

b athipudaur, Karaikudi - (
Vagangai Dist, Tami| N=

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PARTICULARS PROPOSE | COMPLETE | TEACHIN
D DATE D DATE G AIDS
UNIT I AUTOMATA FUNDAMENTALS
Introduction to formal proof 06.09.2021 08.09.2021 BB
Additional forms of Proof 07.09.2021 09.09.2021 BB
Inductive Proofs 08.09.2021 10.09.2021 BB
Finite Automata 09.09.2021 13.09.2021 BB
DeterministicFiniteAutomata 10.09.2021 14.09.2021 BB
DeterministicFinite Automata 13.09.2021 15.09.2021 BB
problems
Non-deterministicFiniteAutomata 14.09.2021 16.09.2021 BB
Non-deterministicFiniteAutomata 15.09.2021 20.09.2021 BB
problems -
FiniteAutomatawithEpsilonTransition | 16.09.2021 22.09.2021 BB -’
s
UNIT II REGULAR EXPRESSIONS AND LANGUAGES
I | Regular Expressions 20.09.2021 23.09.2021 BB
2 | FA and Regular Expressions 22.09.2021 24.09.2021 BB
3 | Proving Languages not to be regular 23.09.2021 27.09.2021 BB
4 | Regular languages properties 24.09.2021 28.09.2021 BB
5 | Regular expression properties 27.09.202] 29.09.2021 BB
6 | ClosureProperties 28.09.2021 30.09.2021 BB
7 | ClosurePropertiesofRegularLanguage | 29.09.2021 30.09.2021 BB
s
8 | Equivalence 30.09.2021 01.10.2021 BB
MinimizationofAutomata 30.09.2021 04.10.2021 BB
UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES
1 CFG — Parse Trees 01.10.2021 06.10.2021 BB
Ambiguity in Grammars and 04.10.2021 07.10.2021 BB
Languages
3 | Definition of the PushdownAutomata 06.10.2021 08.10.2021 BB
4 | Languages of a Pushdown Automata 07.10.2021 11.10.2021 BB
5 | Equivalence of Pushdown Automata 08.10.2021 13.10.2021 BB
and CFG
PushdownAutomata 11.10.2021 15.10.2021 BB
PushdownAutomata problems 13.10.2021 18.10.2021 BB
'\% M:MS: ‘_“:HL
B ~BRINCIPA
4 = ol 0 gfaueﬁge of Eng:
e ~- Raaja Raaia aikudi - &
~aravathipudul, Ka@f il N2
i cjyagangal DSt 2

DeterministicPushdownAutomata 15.10.2021 | 20.10.2021 BB
9 | DeterministicPushdownAutomata 18.10.2021 |22.10.2021 BB
problems
UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES
1 NormalFormsforCFG 20.10.2021 25.10.2021 BB
2 Pumpingl.emmaforCFL 22.10.2021 01.11.2021 BB
3 | ClosurePropertiesofCFL 25.10.2021 02.11.2021 BB
4 | TuringMachines 01.11.2021 11.11.2021 BB
5 TuringMachines properties 02.11.2021 15.11.2021 BB
6 | TuringMachines problems 11.11.2021 16.11.2021 BB
7 ProgrammingTechniques 15.11.2021 22.11,2021 BB
8 | Closure properties of TM 16.11.2021 24.11.2021 BB
9 | ProgrammingTechniquesforT™M 22.11.2021 07.12.2021 BB
UNIT V UNDECIDABILITY
1 Non Recursive Enumerable (RE) 24.11.2021 08.12.2021 BB
Language
2 | Undecidable Problem with RE 07.12.2021 13.12.2021 BB
3 UndecidableProblemsaboutTM 08.12.2021 22.12.2021 BB
4 | Post‘sCorrespondenceProblem 13.12.2021 29.12.2021 BB
Theorem
5 | TheClassP Theorem 15.12.2021 30.12.2021 BB
6 | The Class NP Theorem 17.12.2021 31.12.2021 BB
7 | TheClassP problems 20.12.2021 02.01.2022 BB
8 | The Class NP problems 22.12.2021 03.01.2022 BB
9 | Post*sCorrespondenceProblem 29.12.2021 04.01.2022 BB

\ ;"I
N W
—PRINCIPAL™

j ' Engg. &7

3~ Raaja Raajan Coliege‘of Engg, &

Amaravathipudur, Kar__aikugia - oj’y(} 30
cjyagangai Dist. Tamil Nadu

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

n College of Eng-

TRl

S.NO | PARTICULARS | PROPOSED | COMPLETED FEACH ING
| | DATE | DATE AIDS
UNIT I AUTOMATA FUNDAMENTALS

1 Introduction to formal proof 06.09.2021 08.09.2021 BB
2 Additional forms of Proof 07.09.2021 09.09.2021 BB
3 Inductive Proofs 08.09.2021 10.09.2021 BB
4 Finite Automata 09.09.2021 13.09.2021 BB
3 DeterministicFiniteAutomata 10.09.2021 14.09.2021 BB
6 DeterministicFiniteAutomata problems 13.09.2021] 15.09.2021 BB
7 Non-deterministicFinite A utomata 14.09.2021 16.09.2021] BB
8 Non-deterministicFiniteAutomata 15.09.2021 20.09.2021 BB

problems
9 FiniteAutomatawithEpsilonTransitions 16.09.2021 22.09.2021 BB

UNIT Il REGULAR EXPRESSIONS AND LANGUAGES
1 Regular Expressions 20.09.2021 23.09.2021 BB
2 FA and Regular Expressions 22.09.2021 24.09.2021 BB
3 Proving Languages not to be regular 23.09.2021 27.09.2021 BB
4 Regular languages properties 24.09.2021 28.09.2021 BB
5 Regular expression properties 27.09.2021 29.09.2021 BB
6 ClosureProperties 28.09.2021 30.09.2021 BB
7 ClosurePropertiesoﬂ{egularLanguageS 29.09.2021 30.09.2021 Es
8 Equivalence 30.09.2021 01.10.2021 BB
9 Minimizationof A utomata 30.09.2021 04.10.2021 BB
UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES

1 CFG — Parse Trees 01.10.2021 06.10.2021 BB
2 Ambiguity in Grammars and 04.10.2021 07.10.2021 BB

Languages
3 Definition of the PushdownAutomata 06.10.2021 08.10.2021 BB
4 Languages of a Pushdown Automata 07.10.2021 11.10.2021 BB
5 Equivalence of Pushdown Automataand | 08.10.2021 13.10.2021 BB

CFG
6 PushdownAutomata 11.10.2021 15.10.2021 BB |
7 PushdownAutomata problems 13.10.2021 18.10.2021 B "
8 DeterministicPushdownAutomata 15.10.2021 20.10.2021 BB
9 DeterministicPushdownAutomata 18.10.2021 22.10.2021 BB

problems
X COLL5s_ UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES \\ /

Q\‘l /Pgi'ﬂr«iCiPAL
1
)2]

-

~vi Ragja Rag ja
. maravathipu

Sjyagangai

dur, Karaikudi - *

Dist. Tamil Nadu

1 NormalFormsforCFG 20.10.2021 25.10.2021 BB
2 PumpingLemmaforCFL 22.10.2021 01.11.2021 BB
3 ClosurePropertiesofCFL 25.10.2021 02.11.2021 BB
4 TuringMachines 01.11.2021 11.11.2021 BB
5 TuringMachines properties 02.11.2021 15.11.2021 BB
6 TuringMachines problems 11.11.2021 16.11.2021 BB
7 ProgrammingTechniques 15.11.2021 22.11.2021 BB
8 Closure properties of TM 16.11.2021 24.11.2021 BB
9 ProgrammingTechniquesforTM 22112021 07.12.2021 BB
UNIT V UNDECIDABILITY
1 Non Recursive Enumerable (RE) 24.11.2021 08.12.2021 BB
Language
2 Undecidable Problem with RE 07.12.2021 13.12.2021 BB
3 UndecidableProblemsaboutTM 08.12.2021 22.12.2021 BB
4 Post*sCorrespondenceProblem 13.12.2021 29.12.2021 BB
Theorem
5 TheClassP Theorem 15.12.2021 30.12.2021 BB
6 The Class NP Theorem 17.12.2021 31.12.2021 BB
7 TheClassP problems 20.12.2021 02.01.2022 BB
8 The Class NP problems 22.12.2021 03.01.2022 BB
9 Post‘sCorrespondenceProblem 29.12.2021] 04.01.2022 BB

——PRINCIP

S Raaja Raajan College of L’r

Amaravathipudur, Karalkuc.
Qjvagangai Dist. TaM

UNIT I- AUTOMATAFUNDAMENTALS
What is TOC?

In theoretical computer science, the theory of computation is the branch that
deals with whether and how efficiently problems can be solved on a model of
computation, using an algorithm. The field is divided into three major branches:
automata theory, computability theory and computational complexity theory.

In order to perform a rigorous study of computation, computer scientists work
with a mathematical abstraction of computers called a model of computation.
There are several models in use, but the most commonly examined is the Turing
machine.

Automata theory

In theoretical computer science, automata theory is the study of abstract
machines (or more appropriately, abstract 'mathematical' machines or systems)
and the computational problems that can be solved using these machines. These
abstract machines are called automata.

This automaton consists of

* states (represented in the figure by circles),

As the automaton sees a symbol of input, it makes a fransition (or jump) to
another state, according to its fransition function (which takes the current state
and the recent symbol as its inputs).

Uses of Automata: compiler design and parsing.

h

ure 1.2: A finite automaton modeling recognition of then

™~
E \
mverse: at+(-a)=0 \\
iplicative inverse: a*1/a=1 P ﬁ*?(?fpp‘e“‘oﬁ—
ajan coled! cudh
~a Raal2 R g, Kare!

ot p:c;a'\ Dist. Tam! !
Universal set U={1,2,3,4,5} e

yadd

Subset A={1,3}
A’ ={2,4,5}

Absorption law: AU(A NB)=A, AN(AUB) = A
De Morgan’s Law:
(AUB)’ =A’ N B’ (ANB)’ = A’ U B’ Double compliment

(A%) =A

ANA=0

Logic relations: ab=>7a Ub 7(ab)=7a U 7b

Relations:

Let a and b be two sets a relation R contains aXb. Relations used in TOC:

Reflexive: a=a
Symmetric: aRb =>bRa
Transition: aRb, bRc =>aRc¢

If a given relation is reflexive, symmentric and transitive then the relation is
called equivalence relation.

Deductive proof: Consists of sequence of statements whose truth lead us from
some initial

= The-theorem that is proved when we go from a hypothesis H toa conclysi
V& s is the statement “if H then C.” We say that C is deduced fror

{5 AR ' X _
' Additional fomis of proof: - BRIN AL
" n College O
nCo v
0f9f?ets S Raaja Raaj@ Karaitt 2l
— . al

Proof by contradiction

Proof by counter example

Direct proof (AKA) Constructive proof:

If p is true then g is true

Eg: if a and b are odd numbers then product is also an odd number. Odd number
can be represented as 2n+1

a=2x+1, b=2y+1

product of a X b = (2x+1) X (2y+1)

= 2(2xytx+y)+1 = 2z+1 (odd number)
Proof by contrapositive:

The contrapositive o the statement “if H and C” is “if not C then not H.” A
statement and its contrapositive are either both true or both false, so we can
prove either to prove the other.

Theorem 1.10: RU(SNT) = (RUS) N (RUT).

Statement Justification -

TTeemkc e o —

2. | zisin Rorzisin SNT | (1) and definition of union

. lzisinRorzisin (2) and definition of intersection

 bothSand T

4. lzisin RUS (3) and definition of union
| 5. |zisin RUT (3) and definition of union

6. | zisin (RUS)N(RUT) | (4), (5), and definition

- of intersection

Figure 1.5: Steps in the “if” part of Theorem 1.10

i & ENndd. & Ter
Sri Raaja Raajan College of E 9693 s

i raikeLid] =
avathipudur, Karaﬁ_{_u;i_
Amarcivagaagai Dist. Tamil Nadu

]
(]

01

St&_t__gm&m | Justification

I.[zisimn(RUS)N (R UT) | Given

2.|lzisin RUS (1) and definition of intersecti
3. lzisin RUT (1) and definition of intersecti

4. lzisinRorzisin {2}, (3), and reasoning

both S and T about unions
5. |lzisinRorzisin SNT | (4) and definition of intersecti
6. | zisin RU(SNT) (5) and definition of union

Figure 1.6: Steps in the “only-if” part of Theorem 1.10
Figure 1.6: Steps in the “only-if” part of Theorem 1.10

To see why “If H then C” and “I not C then not H” are logically equivalent, first
observe that there are four cases to consider:

1. H and C both true

2. H true and C false
3. C true and H false
4. H and C both false

Proof by Contradiction:
H and not C implies falsehood.

That is, start by assuming both the hypothesis H and the negation of the
conclusion C. Complete the proof by showing that something known to be false
follows logically from H and not C. This form of proof is called proof by
contradiction.

It often is easier to prove that a statement is not a theorem than to prove it is a
theorem. As we mentioned, if S is any statement, then the statement “S is not a
theorem 1s ltsel a statement without parameters, and thus can be regarded as an

20pain : All primes are odd. (More formally, we might say; if integer
$8Rrjme, theh x is odd.) \
Rl

Sri Raaja Raajan uoHeb
Amaravathipudur, Karaik. oo
Sivagangai Dist. Tam:l Nadu

DISPROOF: The integer 2 is a prime, but 2 is even.

For any sets a,b,c if alb = & and ¢ is a subset of b the prove that afNe

=Ty
Assume: aNc =@ |
Then md wer =% vl

=>allb @ =>aNc=(i.e., the assumption is

Proof by mathematical Induction:

Suppuse we are given a statement S(n), about an integer n, to prove. On
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer . Usually, i =
or i = 1, but there are examples where we want to start at some higlie
i, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > i, where i is the basis integer
and we show that “if S(n) then S(n + 1).”

¢ The Induction Principle: If we prove 5(i) and we prove that for all n > ﬂ,
S(n) implies S(n + 1), then we may conclude S(n) for all n > i.

Languages :

The languages we consider for our discussion is an abstraction of natural
languages. That is, our focus here is on formal languages that need precise and
formal definitions. Programming languages belong to this category.

z,

Symbols -z«

Sym&g%iﬁdivisible objects or entity that cannot be defined. That is,
symbols are atoms of the world of languages. A symbol is any single object

suchas 1,4, 0, 1, #, begin, or do. Usually, characters from a typica ard

are only used as symbols. ,..—a/lpR 1P L
Sri Raaja Raajan Coliegewic. .
Amaravathipudur, Karaikudi - 8= %
Sjvagangai Dist. Tamil Nadu

Alphabets :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is
denoted by). When more than one alphabets are considered for discussion,

subscripts may be used (e.g. X1, Y 2 etc) or sometimes other symbol like G may
also be introduced.

&= 1)
I=ia. b ¢
Zufa. b o, &, 2
Z={# V. & B

Example :

Strings or Words over Alphabet :

A string or word over an alphabet} is a finite sequence of concatenated
symbols >

Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 }
aab, abcb, b, cc are four strings over the alphabet { a, b, ¢ }

It is not the case that a string over some alphabet should contain all the symbols
from the alphabet. For example, the string cc over the alphabet { a, b, ¢ } does
not contain the symbols a and b. Hence, it is true that a string over an alphabet
is also a string over an alphabet is also a string over any superset of that
alphabet.

Length of a string :

yymbols in a string w is called its length, denoted by | w|

W | =4,|111=2,|b|=1 —-*“"@%L

Sri Ragja Raajan College -
Amaravathipudur, Kar
Sivagangai Dist. 1anui vaww

Convention : We will use small case letters towards the beginning of the
English alphabet to denote symbols of an alphabet and small case letters

towards the end denote strings over an alphabet. That a,b,c, €Y (symbols)
and u, v, W, X, y,Z are strings.

Some String Operations :

Let x = a0, € o, and y = bbb e b, be two strings. The concatenation of -
string eyaya; -~ a bbby -~ b, . That is, the concatenation of x and v denoted by xy |
x followed by a copy of v without any intervening space between them.

Example : Consider the string 011 over the binary alphabet. All the
prefixes, suffixes

Prefixes: g, 0, 01, 011. Suffixes:
g, 1,11, 011. Substrings: &, 0, 1,01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and ¢ is a prefix
(suffix or substring) to any string.

A stringxis a proper prefix (suffix) of stringyifxis a prefix (suffix)
of yand x # y.

In the above example, all prefixes except 011 are proper

Powers of Strings : For any string x and n>=0, we use x pow(n) to
denote the string formed by sequentially concatenating » copies of x. We

S
e PRINCIPAL -

Sri Raaja Raajan College ¢
Amaravathipudur, Karaik.
Sjvagangai Dist. Tami nNadu

definition of *" as follows:
=g, ifn=0; otherwise ** = xx

?’«-}

Example : If x= 011, then *'=011011011, »'=011 and =" =¢

Powers of Alphabets :

We write 2k (for some integer k) to denote the set of strings of length k with
symbols from 3’ . In other words,

2k= { w | w is a string overYand | w | = k}. Hence, for any
alphabet, 2.0 denotes the set of all strings of length zero. That Yo= { e }. For the
binary alphabet { 0, 1 } we is,

2o0={e}

21={0,1}

22={00,01,10,11}

3= {000,001,010, 011,100, 101,110,111}

The set of all strings over an alphabet . is denoted by >.*. That is,
E=F0T 21T 2W..cous e
= U2k

The set >* contains all the strings that can be generated by iteratively symbols
from any number of times.

Example : If > ={ a, b }, then = { & a b, aa, ab, ba, bb, aaa, aab, aba, abb,
baa, ...}

" an College L ENE™) g
- qgla Rﬂai thr Kafa\KUSﬁl Ud,_;_

Please note that if = 7, then =" thatis ¢ ~). it may look odd that one can |
proceed from the empty set to a non-empty set by iterated concatenation. But there

a
The set of all nonempty strings over an Zis denoted by = . That s, |
el uT Oy e B

=z

Note that is infinite. It contains no infinite strings but strings of arbitrary

Reversal :
For any string ™ ~ “4%#%: " “:the reversal of the string is ¥~ “s1 &5

An inductive definition of reversal can be given as

Languages :
Alanguage over an alphabet is a set of strings over that alphabet. Therefore,

language L is any subset of = . Thatis, any £ & =@

Example :

e

. Fis the empty language.
is a language for any

I

3. {¢}is a language for any . Note that, “ ™ '/ . Because the language F does
contain any string but {¢} contains one string of length zero.

4. The set of all strings over { 0, | } containing equal number of 0's and

5. 1's. The set of all strings over {a. b, ¢} that starts with a.

Convention : Capital letters 4, B, C, L, etc. with or without subscripts are
normally used

Set_operations on languages : Since languages are set of strings we can apply
o ns to languages. Here are some simple examples (though there is
in it). '-

———PRINCIBAL"
Raaja Ragjan College of 1
#maravathipudur, Karaikua; - vou 3U1
Sivagangai Dist. Tamil Nadu

Sri

Union: Astring * = &1 Y&y iff * or ¥ € 4

Example : {0, 11,01,011 +{1,01,110}={0, 11,01,011, 111}
Intersection : A string, x L4 N L iff x € L, an.d X €
Example : {0, 11,01,011 ™{1,01,110}~ {{J‘-E }

Complement : Z'is the universe that a compiemeni is taken with respect
Thus for a language L, the complement is L(bar) = T EEL)

Example : Let L = { x| [x|is even }. Then its complement is the language { = =
odd }.

Similarly we can define other usual set operations on languages like

relative complement, symmetric difference, etc.

Reversal of a language :
A 72 o (af) e b
" The reversal of a language L, denoted as , is definedas: =~ = 7 | ==,

Example :

I. LetZ={0,11,01,011} Then £ ={0,11,10,110}.

¢ — PRINCIPA L

HoD } 2l
~ PRINCIPAL
" ™=gja Raajan College of Eng’
A aravathipudur, Karaikudi- 6. . .
Sivagangai Dist. Tamil Nadu

UNIT II - REGULAR EXPRESSIONSAND LANGUAGES

Regular Expressions: Formal

We construct REs from primitive constituents (basic elements) by repeatedly applying certain
recursive rules as given below. (In the definition)

Definition: Let § be an alphabet. The regular expressions are defined recursively as

Basis:

P
iy isaRE
iy isaRE
iy ¥ 45 gis RE.

These are called primitive regular expression i.e. Primitive

Recursive Step :

'?”‘I e
Iif 7and < are REs over, then so are

n +.?‘.;,

i)

"

Closure : ris RE over only if it can be obtained from the basis elements (Primitive-REsPByd@iaitd no
of applications of the recursive step (given in 2). "™ Ragja Raajan College of F
Amaravathipudur, Karaikuc
Sjvagangai DisLl. Tamil ivew.

Example : Tet [1={0,1,2 }. Then (0+21)*(1+ F)is a RE, because we can construct this expression
applying the above rules as given in the following step.

Steps RE Constructed Rule Used

1 1 Rule 1(ii)

2 P Rule 1(i)

3 4+ @ Rule 2(i) & Resuits of Step 1, 2
4 (1+ *?9) Rule 2(iv) & Step 3
5 2 1(iii)

6 1 1(iii)

7 21 2(ii}, 5, 6

8 0 1(iii)

9 0+21 2(),7.8

10 (0+21) 2(iv), 9

11 (0+21)* 2(iii), 10
12 (0+21)* 2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated with every
RE).

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can define
the

M,

—PRINCIPAL
Sri Raaja Raajan Coliege of i
Amaravathipudur, Karaikudi -
Sivagangai Dist. Tamil Nac..

1. Vis the RE describing the empty language i.e. 1 ~ il
2. Sis a RE describing the language { }ie. I()=1{ }.

3.Va €8 gisare denoting the language {a) i.e . L(a) = {a} .

4.1f "1and "2 are REs denoting language L("'1) and £(%) respectively, then

5 + ¥

i) “is a regular expression denoting the language /(e "‘i') =L{ Jul 3)

i) 1" 2is a regular expression denoting the language L("1"2)=L("1y 1("%)

-

iii) Tis a regular expression denoting the language

3

L i ¢ _\'
L(n) :ixigrl};l

i 1) is a regular expression denoling the language L((F 1) =L = 1)

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is

L@O*0+1)) = LO* LO+1) ... by 4(ii)
= L(0)*L(0) u L{1)
={ .0,00000....3{0} {1}

={ ,0,00,000.......}{0,1)

.=j{é:,5m;.gooa, A, 01,001, 0001,.............}

Consider the RE ab + ¢. The language described by the RE can be thought of either L(a)L(btc)
or L(ab)(] L(¢) as provided by the rules (of languages described by REs) given already. But th
represents two different languages lending to ambiguity. To remove this ambiguity we can either M

—PRINCIPAL ™~

Sri Raaja Raajan Coliege of
Amaravathipudur, Karaikti
Sivagangai Dist. Tar

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras
mod in mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenatxon & union (+) operators are associative and union
operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) [1 L(c) i.e. it
should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the language
represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))* [IL(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* [J L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1}
which are either ended with 0 or 11.

=" PRINCIPAL

Sri Raaja Raajan College 6f Enge. © =}

Amaravathipudur, Karaikug) -«
Sivagangai Dist. Tamil Nadi

An arbitrary string over [J = {0,1} is denoted as (0+1)*,

Exercise : Give a RE r over {0,1 } st

N = E’ ¥
L et |

has at least one pair of consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes
before is completely arbitrary. Considering these observations we can write the REs as
(O+1)*11(0+1)*,

Example :Considering the above example it becomes clean that the RE
(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the substring 11
or 00.

Example : Consider the RE 0%10%10*. It is not difficult to see that this RE describes the set of strings
over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before,
between and after .

Example : Consider the language of strings over 10,1} containing two or more

Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and
after is completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two
REs also represent the same language, each ensuring presence of least two 1's somewhere in the string

i) 0*10% 1(0+1)*

i) (0+1)£10710% 27

—PRINCIPAL
~ Raaja Raajan College of T
Amaravathipudur, Karaiky.

Example : Consider a RE r over {0,1} such that Sivagangai Dist. Tamil Nauu

i
Sy -

ae{il |a
L(r)z{u t“l. % i i({-}

has no pair of consecutive 1's}

Solution : Though it looks similar to ex , it is harder to construct to construct. We observer that,
whenever

a 1 oceurs, it must be immediately followed by a 0. This substring may be preceded & followed by
any no of 0's. So the final RE must be a repetition of strings of the form: 00...0100....00 i.e. 0%100*,

So it looks like the these observations into consideration, the final RE is r =
(0*100*)(1+ 11)+0*(1+).

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r =
(0+10)*(1+ [1).This is a shorter expression but represents the same language.

Regular Expression:

FA to regular expressions:

o
. ge is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M,
()

such that L = L(r).

Proof : We need to construct a RE r such L(r)={wlwIL(M)}. Since M is a DFA, it has a finite no of

states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [Note : if the n states of M

were denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n i W
\

— " PRINCIPAL ™~
Sri Raaja Raajan College of ™
"\maravathipudur, Karaikue
Sivagangai Dist. Tamil ..

Notations : r;* is a RE denoting the language which is the set of all strings w such that w is the label
of path from state i to state (1<=Lj<=n) in M, and that path has no intermediate state whose number is

greater then k. (i& j (begining and end pts) are not considered to be "intermediate” so i and /or j can
be greater than k)

1)

We now construct 3 inductively, for all i, =0 starting at & = 0 and finally reaching k= n.

i

Basis: k=0, 7 ie.the paths must not have any intermediate state (since all states are nu

above). There are only two possible paths meeting the above condition :

1. Adirect transition from state / to state o
03

o 1 =aifthenis a transition from state 7 to state / on symbol the single syn

R ;
2 'y Pk

{.11,‘&"52, et s;'li_ i
i

o 1= fif there is no transition at all from state 7 to state 7.

2. All paths consiéﬁng of only one node i.e. when i = j. This gives the path of length 0 (i.e.
denoting the string ') and all self loops. By simply adding [to various cases above |

corresponding REs i.e.
A

o S ; x .
o ? =E%+gifthereis a self loop on symbol a in state
2K
it PR S = M TN . e Z ’ ;
o B m€4H T Zrif there are self loops in state i as multiple symbo
“1 ¥ l.zq % l.dt

L
== ?.'S‘\i-’ = = ifthere i no self loop on state

SR\
Induyction :
Assuk&at there exists a path from state i to state J such that there is no intermediate state whose
number greater than k. The corresponding Re for the label of the path is r;j(k). There are only two
possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states are less
than k. So, the label of the path from state i to state j is tha language described by the r,-,-(k").

2. The path goes through the state k at least once. The path may go from i to j and k may appear
more than once. We can break the into pieces as shown in the figure 7. “'/‘P_RmC!ﬁL\‘

~7 Raagja Raajan.College of Er

\ , /unara{vathipudur, Karaikudi - oo,
Sivagangai Dist. Tamil Nadu

“nif there are multiple transitions from state 7 to state

~.

WVE

(LR

f’ié‘a.a;.

g 5 .é "“f<
FAL s k1)

Al Ty
O~

A path from i to j that goes through k exactly once

(M)
< Jufet 1 N o
OO 0% 0

A path from i to j that goes through k more than once

Figure 7

1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate
states are less than k and it starts at iand ends at k. So the RE r,®" denotes the language of the label
of path.

2. The last part from the last occurence of the state k in the path to state j. In this path also, no
intermediate state is numbered greater than k. Hence the RE rk_i(k")denoting the language of the label
of the path.

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop which may
be taken zero times, once or any no of times. And all states between two consecutive k's are numbered
less than k.

Hence the label of the path of the part is denoted by the RE 1;*"". The label of the path from state i to
state j is the concatenation of these 3 parts which is

(k13
A %

*
el § el
i : } kj

ik L Hk

g

PRINCIPAL ™~

—

‘-\maravathipudur, Karaikudi -

Sivagangai Dist. Tamil Na

" Ragg Raajan College of Ep- .

RV ECIVE

du

() — Dy el nt gely
I TR £ j 1
!,I}JTJ
We can construct 7 foralli, £{12,., n} in increasing order of & starting with the basis 4 =

kD
since ? depends only on expressions with a small superscript {(and hence will be avail‘abler).
that state 1 is the start state and /1> <2+~ ~a are the m final states where <{1,2, .
7= % | According to the convention used, the language of the automatacan be denoted by tl‘

‘%'r o T S rlh'

iy " Lig

Since rijl(“’ is the set of all strings that starts at start state 1 and finishes at final following the
transition of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the
aufomata.

Regular Grammar:

. o= (N0 Bl nloa e . b
A grammar E W » s right-linear if each production has one of the followirig
r A™7¢B,
. A sl Cs

» ‘4_—?6

Where 4, < '(with 4 = B allowed) and © € = . A grammiar (G is left-linear if each prod
the following three forms.

A7 B . A ¢ €

Theorem : A language L is regular iff it has a regular grammar. We use the following two 1ammag to

prove the above theorem. M

RINCIPAL
Sri Ragja Raajan College of & NGg. &

meravath;pudur Karax*wc‘: 630 3<r1

lvagangqi Dist. Tamijj Nadu

UNIT III - CONTEXT FREE GRAMMAR AND LANGUAGES

PUSHDOWN AUTOMATA

Grammar

A grammar is a mechanism used for describing languages. This is one of the
most simple but yet powerful mechanism. There are other notions to do the
same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of
words constructed from these symbols, and a set of rules using which we can
group the words to construct meaningful sentences. The grammar for English
tells us what are the words in it and the rules to construct sentences. It also tells
us whether a particular sentence is well-formed (as per the grammar) or not. But
even if one follows the rules of the english grammar it may lead to some
sentences which are not meaningful at all, because of impreciseness and
ambiguities involved in the language. In english grammar we use many other
higher level

<sentence> -- >< noun-phrase >< predicate >

meaning that "a sentence can be constructed using a 'noun-phrase’ followed by a
predicate".

Some more rules are as follows:
< noun-phrase > --> <article >< noun >
<predicate> --> <verb>

with Sélélél kind of interpretation given above.

5. Even though all sentences are well-formed, the last one is not
meaningful. We observe that we start with the higher level construct
<sentence> and then reduce it to <noun-phrase>,

———— PRINCIPAL

\ Sri Raaja Raajan Coliege ¢
Amaravathipudur, Karail
Rivagangai Dist. Taam 1vw--

\

<article>, <noun>, <verb> successively, eventually leading to a group of words
associated with these

These concepts are generalized in formal language leading to formal grammars.
The word 'formal' here refers to the fact that the specified rules for the language
are explicitly stated in terms of what strings or symbols can occur. There can be
no ambiguity in it.

Formal definitions of a Grammar

Agrammar G is defined as a quadruple.

el O

Y PR ¥
f,,,T il lg ;L' PR I | |
4

N is a non-empty finite set of non-erminals or variables,

-

;o i : i , -‘ﬁf - Z = ;
= is a non-empty finite set of terminal symbols such that ** ' ¥

¥

~ : : Po(Nuz)
. is @ special non-terminal (or variable) called the start symbol, and = = *
finite set of production rules.

*

e -3 . ‘
- The binary relation defined by the set of production rules is denoted by —,ie. “ 77 ~ig |

- v— B e W)
in other words, P is a finite set of production rules of the form “~ 7 ~ , where ™ . d

@/éﬁon rules specify how the grammar transforms one string to another. Given a
e production rule < P is applicable to this string, since it is possible to use the

- = o AT B
£V e o ! o " iy . LY : Y e [
the & (in e yto © obtaining a new string “~", We say that ““* derives ““7 and is dbr

— " PRINCipal
Q < . (EN
ri sza,ra Ra_a]an College ¢ oy G 1ECH
) -Jia;yath;pudqr, Karaikudi -V6‘§0 301
"0angai Dist. Tamil Nady

Successive strings are dervied b
in any arbitrary order.

y applying

By applying the production rules
generate many strings of termin
symbol, S, of the grammar,

A

(3

o

L
[r—
B 2

We write e
derived from © in one or more steps.

By applying the production rules in arbitra
symbols starting with the s
called

- G=(Nz
Formaly, for a given grammar ~ *":

fthe string * can be derive

pecial start symbol, S, of the grammar. The set of all such ter

the productions rules of the grammar

in arbitrary order, any given grammar can
al symbols starting with the special start

Ty order, any given grammar can generate man

%

—"'-‘ E: | i
R language generated by G is

PRINCIPAL
Sri Raaja Raajan College of
Amaravathipudur, Karaik..
Sivagangai Dist. Tamil New..

o Y
d from the string & in zero or more steps;

s
mi

E %
PR "
7 1 ":‘::“—--\“-—\m——%., e o TR T

W z;-zl,,.fl > 1 =5 =5 ==
if ST, we must have for some ¥ £ f‘, il Semd : . der

S0, =W
derivation sequence of w, The strings e ol are denoted as sentental
derivation.

G={Nz] .
Example : Consider the grammar ~ /"= . where N = {§}, = ={q, b} and P is the

production rules

{ —"ab, SuSh)
Some terminal strings generated by this grammar together with their derivation is given bTIc
8 = ab
S = aSb™ aabb
$ = aSb™ aaSbb= aaabbb
Itis easy to prove that the language generated by this grammar is

L(G) ={a't |i 21}

PRINCIPAL
o Ragja Raajan Coilege of v,
Amaravathipudur, Karaikudi - 834 .
Qn/agemgan Dist. Tamil Nady

we L{T) i e S
If TV we must have for some = U 1 2 ¢ . den

derivation sequence of w, The strings * 4> %, ., &, = are denoted as sententlal

derivation.

—
T

—

¥ g %
=T oo
3 Snas |

P AV, 2

)
Example : Consider the grammar
production rules

{ ab §aSh}
Some terminal strings generated by this grammar together with their derivation is given
S = ab
$ = aSh= aabb
§ = aSb= aaSbb = aaabbh
Itis easy to prove that the language generated by this grammar is

T T g P
Gy =1a'® |1 21}

R L COkous Wi Sigye
cagjaraajan Loneys Wi EISE fang
oﬁ'h’lgpﬂtathiéudur, Kara:kusj;N 633
Amarcaivaga ngai Dist. Tamil Na

=/ where N = {S). =={a, b} and P s the

e

¢

"

To generate any other string, it needs to start with the production S aSh and then the nor-t
N
used one or more times. Every time it adds an 'a' to the left and a '} to the right of S, thus g

RHS can be replaced either by ab (2 which we get the string aabb) or the same productig

#] i {”',é ~' :} j !
@Rl 221 When the non-terminal is replaced by ab (which is then only possibility

P
i
&, & A

;

form

terminal string) we get a terminal string of the form

- There is no general rule for finding a grammar for a given language. For many languages w
grammars and there are many languages for which we cannot find any grammar.

{ %
[, =1

Example: Find a grammar for the language il

=,'Jtz+l

2

l v_lf

Itis possible to find a grammar for L by modifying the previous grammar since we need to g

atht n 2 : : . 5
atthe end of the string “ ¥ » % =~ 1 . We can do this by adding a production 7 B where
ab, izl

generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

1’

'where, N={ S, B}, P={ ~ Bb, B~ ab, B~ aBb)

o X o cr
_“_lk.zb}-,.r_,.. S

fy
4

Parse Trees:

s m.___ PRINCIPAL
. '381a Raajan Coliege of Enc
aravathipudur, Karaikugj -
Sivagangai Dist, Tamil Nagy

iv

fo

el

t

There is a tree representation for derivations that has proved ext
This tree shows us clearly how the symbols of a terminal strin
into substrings, each of which belongs to the language of one of]
the grammar. But perhaps more importantly, the tree, known ab

Construction of a Parse tree:

Let us fix on a grammar G = (V, T, P, S). The parse trees for G|z
the following conditions:

1. Each interior node is labeled by a variable in V.

2. Each leaf is labeled by either a variable, a terminal, or e. H
leaf is labeled e, then it must be the only child of its parent

3. If an interior node is labeled A, and its children are labeled

Xi, d’?2’t . -’-‘Yk‘

respectively, from the left, then 4 — X, X, .. - X is a produpi
Note that the only time one of the X's can be € is if that is th
the only child, and 4 — € is a production of ¢.

Example 5.10: Figure 5.5 shows a parse tree for the palindrome|g
Fig. 5.1. The production used at the root is P - 0P0, and at the
of the root it is P — 1P1. Note that at the bottom is a use of the |
P - ¢. That use, where the node labeled by the head has one child
is the only time that a node labeled ¢ can appear in a parse tree.

E

Figure 5.5: A parse tree showing the derivation I’ = 01111

Yield of a Parse tree:

If we look at the leaves of any parse tree and concatenate them frot
get a string, called the yield of the tree, which is always a string th
from the root variable. The fact that the vield 1s derived from the
proved shortly. Of special importance are those parse trees such fl

d

o

1. The yield is a terminal string. That is, all leaves are label
a terminal or with e.

2. The root is labeled by the start symbol.
Ambiguity in languages and grammars:
~ PRINCIPAL™
~-gja Raajan Coliege of En

aravathipudur, Karaikudi - vou ou-
Qjyagangai Dist. T amil Nadu

When a grammar fails to provide unique structures, it is sometimes posgit

to redesign the grammar to make the structure unique for each string in
language. Unfortunately, sometimes we cannot do so. That is. there are s
CFL’s that are “inherently ambiguous”; every grammar for the language ;
more than one structure on some strings in the language.
grammar lets us generate expressions with any sequence of # and + operat

and the productions E — E + E | Ex E allow us to generate these express
in any order we choose.

Example 5.25: For instance, consider the sentential form E+ Ex E. It
two derivations from E:
L. E=mE+E=>E+E*E
2. ESExE=sE+ExE
Notice that in derivation (1), the second E is replaced by E % E, whil
derivation (2), the first E is replaced by E + E. Figure 5.17 shows the

parse trees, which we should note are distinet trees.

E

PN T
e E N Faad

(a) (b)

wh ,l‘z?we can find two different parse trees, each with root labeled

18 unambiguous.

Push down automata:

Regular language can be charaterized as the language accepted b = ite
automata. Similarly, we can characterize the context-free languggﬁg’}t rngg.
v Kaaja Ragjair Lotege -

gthipudur, Karaikudi - 63 -
Amarg;\’/ggapngai Dist. Tamil Nadu

sy

. If'each string has at most one parse tree in the grammar, then the

t
01
813
01
o

h

{73

langauge accepted by a class of machines called "Pushdown Automata" (PDA).
A pushdown automation is an extension of the NFA.

It is observed that FA have limited capability. (in the sense that the class of
languages accepted or characterized by them is small). This is due to the "f in
ite me mory" (number of states) and "no ex ternal involved with them. A PDA
is simply an NFA augmented with an "ex te r nal s tack me mory". The addition
of a stack provides the PDA with a last-in, first-out memory management
cpapability. This "S tack" or "pushdown store" can be used to record a
potentially unbounded information. It is due to this memory management accept
many interesting languages like {a'bn>=0}. Although, a PDA can store an
unbounded amount of information on the stack, its access to the information on
the stack is limited. It can push an element onto the top of the stack and pop off
an element from the top of the stack. To read down into the stack the top
elements must be popped off and are lost. Due to this limited access to the
information on the stack, a PDA still has some limitations and cannot accept
some other interesting languages.

input tape

*
1«asn--.'.:-;-n;ae-A..-oi--‘—-'cwihﬁv-«»'i iiﬂ
i

finite
conirol

igure, a PDA has three components: an input tape with read only
head, ite-control and a pushdown store.

The input head is read-only and may only move from left to right, one symbol
(or cell) at a time. In each step, the PDA pops the top symbol off the stack;
based on this symbol, the input symbol it is currently reading, its present state,
it can push a sequence of symbols onto the stack, move its read-only head one

%/— o BRINCIPAT ™
HOO e “«q%&%ﬁ&ﬁge of En:

- ' x e _nr‘" = o
Ht;ihiﬂdﬁ'«‘r. '.{:c;:_c_lkL,\-.lﬁ'... !

UNIT 1V - PROPERTIES OF CONTEXT FREE LANGUAGES

TURING MACHINES
Empty Production Removal

The productions of context-free grammars can be coerced into a variety of
tforms without affecting the expressive power of the grammars. If the empty
string does not belong to a language, then there is a way to eliminate the

Procedure to find CFG with out empty Productions

Step (i): For all productions 4 —s A. put 4 into Py
Step (if): Repeat the following steps until no further variables are added to If,
For all productions|

Step (i): For all productions 4 — .. put 4 into Fy. .
Step (ii): Repeat the following steps until no further variables are added to Py
For all productions|

B— iy 4.,

3

where 4,, 4,,4,, ... -y A, are in Py, put B into ¥,
To find P, let us consider all productions in P of the form

o

——PRINCIPAL”
* Magja Raajan College of Er
avathinudur, Karaikudi - vev -
f { : Dl Gin
igravathipudur, Kargixix
Sjvagangai Dist. farmil Nadu

«

Any production of a CFG of the form
4d-2 B

where 4. B & ¥ is called a “Unit-production”. Having variable one on either
side of a production 15 sometimes undesirable.

“Snb:,tmm:}n Rule” is made use of in removing the unit-productions.

Cm*en = (V. I. 5. P). a CFG with no A-productions. there exists a CEG
G= (V i . P that does not have any unit-productions and that is equivalent
o G.

Letus illustrate the procedure to remave unit-production thr ough example

2.4.6.
Procedure to remove the unit productions:

Find all variables B, for each 4 such that
A=B

This is done by sketching a “depending graph” with an edege (C, D)

whenever the grammar has unit-production C — D, then 4 =28 holds

whenever there is a walk between 4 and B. !

The new grammar G. equivalent to G is obtained by letting into 2 all
non-unit productions of P,

-

Then for all 4 and B satisfving 4 => B, we add to P

A= niy ...y,

where B — 3 {w |...... | ¥, is the set of all rules in P with B on the left.

Left Recursion Removal

ok

T e
PRINCIPAL

Tagia maa;&’ 1 LrOnr”"""" of E

_ aravathipudur, Kara*kudl-.
g Sjvagangai Dist. Tamil Nadu

bl ST

generated by a grammar with no useless symbols and no unit prody_c_ti_gllgi’.

A variable 4 is left-recursive if it occurs in a production of the form
A— Ax

foranyxe (V' uTy .

A grammar is left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recussive,

NORMAL FORMS

Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal
Form (GNF) are

Chomsky Normal Form (CNF)

Any context-free language L without any A- production is generated by a
grammar is which productions are of the form A — BC or A—s a, where A,
B€VN,andaeV

T. Procedure to find Equivalent Grammar in CNF

Eliminate the unit productions, and A-productions if any,

(ii) Eliminate the terminals on the right hand side of length two or more.

number of variables on the right hand side of productions to

z):’Apply the following theorem: “Every context free language can be

PRINCIEA

INHE AT

Sri Raaja Raajan Colisgs «
\ \maravathipudur, Karaiky
' Sivagangai Dist. Tamii ns

At the end of this step the RHS of any production has a single terminal or two

or more symbols. Let us assume the equivalent resulting grammar as G =
(Vx,V:,P,S).

For Step (ii): Consider any production of the form
A= ¥y .. 9. mER

If y; is a terminal. say “a’, then introduce a new variable B, and a
production

B, —a
Repeat this for every terminal on RHS.

Let P’ be the set of productions in P together with the new productions

B, — a.LetVy be the set of variables in ¥y together with B, s introduced for

every terminal on RHS,
The resulting grammar G, = (V}, .V,, P'. §} is equivalent to G and every
production in P’ has either a single terminal or two or more variables.

For step (iii): Consider 4 — BB, B,

where B,’s are variables and m 2 3.
Ifm =2, then 4~ B,.B, is in proper forn.
The production 4 — BB, B, 15 replaced by new productions

A- 8D,
Dy — B,D,.

.............

g s i I

Qrj Raaja Raajan 0‘3‘5“{9{3;
Amaravainipucul Eéfifigum (R

o aiagengdl Y

I

Example

Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar
with

S — adbB
A~ adia
B— bBib.

Solution

(1) There are no unit productions in the given set of P,
(1) Amongst the given productions. we have

A3 a,
B-sbh

which are in proper form.
For S — a4bB. we have

S r—p Ba.’fBaB-
B,—a
By = b

For 4~ a4, we have
484
| For B — bB. we have .

B -5 B,B.

e PRINCIPAL

: ! s o
31 Bagia Rasian Cﬁi}ebe; Al
7 ejyagangal Dist Tarmnil Na

Rl Rt s Rt vt e b

(iii) InP"above, we have only
S~ B _AB.B
0ot in proper form.
Hence we assume new variables D, and D, and the productions
S= B i D I

Dy — 4D,

Therefore the grammar in Chomsky Normal Form (CNF) is G, with the
productions given by ;
S— B, 1),
D, — 4D,,
D, - BB,
4= B 4,
B — B,B.
B, - 4,
B, — b.
A= a,
and B— b

A “Pumping Lemma” is a theorem used to show that, if certain strings belong to
a language, then certain other strings must also belong to the language. Let us
discuss a Pumping Lemma for CFL. We will show that , if L is a context-free
language, then strings of L that are at least ‘m” symbols long can be “pumped”
to produce additional strings in L. The value of ‘m’ depends on the particular

— PRINCIPAL
Sri Raaja Raajan Cc!!ege“c:;r‘ e
Amaravathipudur, Karaikudi - 52
ejvagangai Dist. Tamil Nadu

language. Let I be an infinite context-free language. Then there is some
positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then

(1) S =uvwxy (for some u, v, W, X, y)

(i) | vwx|<m
(i) |vx|>1

(iv) uviwxiy€L.
for all non-negative values of i.

It should be understood that

() If S is sufficiently long string, then there are two substrings, v and %
somewhere in S. There is stuff (u) before v, stuff (w) between v and x, and stuff
(y), after x.

(i) The stuff between v and x won’t be too long, because | vwx | can’t be
larger than m.

(iii) Substrings v and x won’t both be empty, though either one could be.

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the
same number of times, the resultant string will also be in L.

Definitions

A variable is useful if it occurs in the derivation of some string. This requires
that

(a) the variable occurs in some sentential form (you can get to the variable if
you start from S), and (b) a string of terminals can be derived from the
sentential form (the variable is not a “dead end”). A variable is “recursive” if it
can generate a string containing itself. For example, variable A is recursive if

ok
RINCIPAL™

A
21l

il Nadu

S =>udy

for some values of u and v/
A recursive variable 4 can be either
(1} “Directly Recursive”, i.e.. there is a production
A-> x5, 4%,
i &
for some strings x,,x, € (T W), or

(11) “Indirectly Recursive™ i.e.. there are variables x.and productions

H—F kg .o,
X, o O SRR
Ap Xy
X, ... 4

Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free
Grammar G that generates

L. Suppose

(i) L is infinite, hence there is no proper upper bound on the length of strings
belonging to L.

(i1) L does not contain .

There are only a finite number of variables in a grammar and the productions
for each.yvariable have finite lengths. The only way that a grammar can generate
sar=t g :, =

tary } Mg strings is if one or more variables is both useful and recursive.

TC PN

ORI, . » & . 3 g
pposg@ﬁig.‘aglable 1s recursive. Since the start symbol is non recursive, it must

=bhe dgfined ;(;nly in terms of terminals and other variables. Then since those
tables arénon recursive, they have to be defined in terms of terminals and

gt Variables and so on.

After a while we run out of “other variables” while the generated string is still
finite. Therefore there is an upper bond on the length of the string which can be
generated from the start symbol. This contradicts our statement that the
language is finite.

Proof: Suppose L is a context-free language.
Ifstring X & L. where| X > m. it follows that X= vy, where| x| € m,

Choose a value 7 that is greater than #. Then, wherever viix occurs in tlie
string @'5'¢’, it cannot contain more than two distinet letters it can be all o°s,
all &’s, all ¢’s, or it can be @'s and 5°s. or it can be °s and ¢’s.

Therefore the string vx cannot contain more than two distinet letters: but
by the “Pumping Lemma" it cannot be empty. either, so it niust contain at least
one letter.

Now we are ready to “pump™.

Since rexyis in L, av wx? ymust also be in L. Since v and x can’t both be
emiply.

i 2 2 § i
HVTUMXT ¥ > uvwxy,

so we have added letters.

Both since wx does not contain all three distinct letters, we cannot have
added the same number of each letter.

Therefore, v wx’y cannot be in L.

Thus we have amrived at a “contradiction™.

Hence our original assumption, that L is context free should be false. Hence the
language L is not context-free.

Example

Check whether the language given by L = {a ,b,cn : m <n <2m} is a CFL or
not.

Solution

— PRINCIPAL ™
"7 Rggja Ragjan College of £ » 7

STk

Amaravathipudur, Karaiku?ib—' £
gjyaosnaai Dist. Tamit Moy

& i } e 3 i - >
Lets=d"b"c™, n being obtained from Pumping Lemma.

Then s = wvwxy, wherel << p,

Therefore, vx cannot have all the three svmbols a. b, .

If you assume that vv has only a’s and b’s then we cag shoose 7 such that
v wx'y has more than 2 occurrence of @ or & and exactly 27 oceurences of .

Hence wv'wix' ye L, which is a contradiction. Hence L is not a CFL.

qusuye properties of CFL —

Let £ be an alphabet, and suppose that for every symbol u in ¥, we choose a
language L,. These chosen languages can be over any alphabets, not necessarily
Z and not necessarily the same. This choice of languages defines a funetion s
(a substitution) on X, and we shall refer to Ly as s(a) for cach symbol a.

fw=aay 0, is astring in £*, then s{w}) is the language of all strings
Z1Zy -+~ &y such that string z; is in the language s{a;), for i = 1,2,0 Put
another way, s(w) is the concatenation of the languages s(a)s{az) - s(an).
We can further extend the definition of s to apply to languages: s(L) is the
union of s(w) for all strings w in L.

Theorem 7.23: If L is a contexi-free language over alphabet £, and s is a
substitution on ¥ such that s(a) is a CFL for cach 4 in Z, then s(L) is a CFL.

PROOF: The essential idea is that we may take a CFG for L and replace each
terminal a by the start symbol of a CFG for language s{a). The result is a
single CFG that generates s{L). However, there are 2 few details that must be
gotten right to make this idea work,

More formally, start with grammars for each of the relevant languages, say
G=(VE,P,5 for L and G, = (Vo Tas P, S,) for each o in E. Since we
can choose any names we wish for variables, let us make sure that the sets of
variables are disjoint; that is, there is no symbol A that is in two or more of
V and any of the V,’s. The purpose of this choice of names is to make sure
that when we combine the productions of the varicus prammars into one set
of productions, we cannot get accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of the given grammars.

|

PRINCIPAL ™

: ek BB
1 Raaja Raajan College of |

&jvagangai Dist. Tamil Nadu

M,ﬂhm‘.uut_h SN

' ikudi - bov |
Amaravathipudur, Karaikudi - vo

¢ V' is the union of V and all the Va'sforain X.
s 7" is the union of all the T,sforain 5.
o P consists of:

1. All productions in any %, fora in I.

2. The productions of P, but with each terminal ¢ in their bodies re-
placed by S, everywhere oceurs.

Thus, all parse trees in grammar G’ start out like parse trees in (7 » but instead
of generating a vield in L, there is a frontier in the tree where all nodes have
labels that are S, for some ¢ in X Then, dangling from each such node is a
parse tree of G, whose yield is a terminal string that is in the language s(a).

Applications of substitution

PRINCIPAL e
Raaja Raajan College }?f c%ng
Amarayathipudur, Kaa‘at udi- -
‘J\mafgza?aggxgai Dist. Tamil Nas..

Theorem 7.24: The context-free languages are closed under the following
operations:

1. Union.

2. Concatenation.

3. Closure (*), and positive closure (*)-
4, Homomorphism.

PROOF: Each requires only that we set up the proper substitution. The proofs
below each involve substitution of context-free languages into other context-free
languages, and therefore produce CFL's by Theorem 7.23.
L. Union: Let L; and Ly be CFL's. Then Ly U Ly is the language s(L),
where L is the language {1,2}, and s is the substitution defined by s(1) =
Ly and s(2) = L,.

2. Concatenation: Again let Ly and Ly be CFL’s. Then Ly Ly is the language
s{L), where L is the language {12}, and 3 is the same substitution as in
case (1).

3. Closure and positive closure: 1f L, is a CFL, L is the language {1}*, and
8 is the substitution s(1) = L;, then L} = s(L). Similarly, if L is instead
the language {1}*, then L} = s(L). _

4. Suppose L is a CFL over alphabet £, and 4 is a homomorphism on . Let
8 be the substitution that replaces each symbc_)l a in ¥ by the language
consisting of the one string that is h(a), That is, s(a) = {h(a)}, for all @
in X. Then (L) = s(L).

Reversal

‘ PRINCIPAL ™——_
" Raaja Rasian Cei - H3Ch
sitldfavathipudu - 630 301

Sivagangai Dist. Tamil Nadu

Theorem 7.25: If L is a CFL, then so is LE.

PROOF: Let L = L(G) for some CFL G = (V,T,P,S). Construct GR =
(V,T, P%,S), where PR is the “reverse” of each production in P. That is, if
A — a is a production of G, then 4 —» a® is a production of G®. It is an easy
induction on the lengths of derivations in G and G* to show that LIGR) = LA,
Essentially, all the sentential forms of G are reverses of sentential forms of G,
and vice-versa. We leave the formal proof as an exercise. 0O

Inverse Homomorphism:

Theorem 7.30: Let Z be a CFL and h a homomorphism. Then h=*(L)is a
CFL.

PROOF: Suppose h applies to symbols of alphabet ¥ and produces strings in
T*. We also assume that 7 is a language over alphabet T, As suggested above,
we start with a PDA P = (Q,7.T, 4, 90, Zo, F) that accepts L by final state.
We construct a new PDA

P'=(Q',%,',(g0,€), Zo, F x {¢}) (7.1)
where:;
1. @' is the set of pairs (g, z) such that:

(a) g is a state in Q, and

(b) = is a suffix (not necessarily proper) of some string h{a) for some
input symbol a in ¥.

That is, the first component of the state of P’ is the state of P, and the
second component is the buffer. We assume that the buffer will period-
ically be loaded with a string h{a), and then allowed to shrink from the
front, as we use its symbeols to feed the simulated PDA P. Note that since
L is finite, and A{a) is finite for all @, there are only a finite number of
states for P,

2. &' is defined by the following rules:
(a) &'((g,€),a,X) = {((q, h(a)),X) } for all symbols a in £, all states
q in @, and stack symbols X in I. Note that a cannot be ¢ here.

When the buffer is empty, P' can consume its next input symbol a
and place h(a) in the buffer.

(b) If (g, b, X) contains (p,7), where bis in T or b = ¢, then
& ((qe b.;l?), £, ‘Y)

contains ((p,z),7). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in 7T, then
the buffer must not be empty, but if b = ¢, then the buffer can be
empty.

3. Note that, as defined in (7.1), the start state of P/ is (gg,€); i.e., P' starts
in the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1), are those states (g, ¢)
such that ¢ is an accepting state of P,

The following statement characterizes the relationship between P’ and P:

* (q0, h{w), Zo) f;: (p.€,7) if and only if ((go, €}, w, Zo) ﬁ ((p,€),€,7).

Turing machine:

tape. There are many variations, all
. ~ PRINCIPAL ™
S R33;-3 Razian Catt o
-"'\mafavaﬁ’z,;‘..;;u;‘;i ASHQIKLL., - ooy o

Sivagangai Dist. Tamil Nady

ane nf

The basic model of TM has a finite set of states, a semi-infinite tape that has a
leftmost cell but is infinite to the right and a tape head that can move left and
right over the tape, reading and writing symbols.

For any input w with [w|=n, initially it is written on the n leftmost (continguous)
tape cells. The infinitely many cells to the right of the input all contain a blank
symbol, B whcih is a special tape symbol that is not an input symbol. The
machine starts in its start state with its head scanning the leftmost symbol of the
mput w.,

Depending upon the symbol scanned by the tape head and the current state the
machine makes a move which consists of the following:

. writes a new symbol on that tape cell,
. moves its head one cell either to the left or to the right and

e (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The
machine continues computing (i.e.

. it decides to "accept" its input by entering a special state called accept or
final state or On some inputs the TM many keep on computing forever without
ever accepting or rejecting the input, in which case it is said to "loop" on that
input

Formal Definition :

PRINCIPAL
y Gollege of EX

e, Karaikudi - Bou <«
sinaravathipudur, Karalkud

-'.,.,V:x.; X - ¥ -'a ~ u
Qiyagangai Dist. iami Nad

T T e -

A =T F 5 e 'T"'"
Formally, a deterministic turing machine {DTM) is a T-tuple M=(Q.EF.6q Sl , where

* Qis afinite nonemply set of states.
. is a finite non-empty set of tape symbols, caliled the tape alphabet of A7,
is a finite non-empty set of input symbols, called the input aiphabet of A4

is the transition function of M,

v %= Yis e inifial or start state,
' Bel'' s the blank symbol
. ’I? i)

) i
= s the set of final state.

So, given the current state and tape symbol being read, the transition function

describes the next state, symbol to be written on the tape, and the direction in
which to move the tape head.

Transition function :

Transition function ;¢

* The heart of the TM is the transition function, é because it tells us how the machine geis one step to
the next.

* when the machine is in a certain state ¢ Q and the head is currently scanning the tape

oI it
XeTl _angir 9(¢.%) = (p.] ’“D'f',men; the machine

I. replaces the symbol X by Y on the tape
2. goes to state p, and

3. the tape head moves one cell (i.e. one tape symbol) to the left (or right)
ifDisL (orR).

The ID (instantaneous description) of a TM capture what is going out at any

moment i.e. it contains all the information to exactly capture the "current state
of the computations".

Sivagangai Dist. Tamil Nadu

. The position of the tape head,

. The constants of the tape up to the rightmost nonblank symbol or the
symbol to the left of the head, whichever is ri ghtmost.

Note that, although there is no limit on how far right the head may move and

write nonblank symbols on the tape, at any finite time, the TM has visited only
a finite prefix of the infinite

—

An ID {or configuration) of a TM M is denoted by S where B M S L gng

’ is the tape contents to the left of the head
* gisthe current state.

. is the tape contents at or to the right of the tape head

2 . B=e ,
That is, the lape head is currently scanning the leftmost fape symbol 2 { Note that if ~ 5, then the

of

If q@is the start state and w is the input fo 2 TM M then the starting or initial configuration of M is
denoted by 7%

Moves of Turing Machines

1 Ragja R
J\mara‘: SRty 3 ¥
Sivagangai Dist,

Tamif Nadu

ta

URTPRRT eS| YT RTINS PP

4

Toindicate one move we use the symbaol . Similarly, zerc,
move of 2 TM

M s defined as follows.
P Y 2el o pat
fpf faiga -f'be an ID of A where <+~ = I agel and
Let there exists a fransition ~

oy
&

PV e GI¥E YEaX B . afaV A
Then we write L% £ - 4, Qg LY 6 meaning that ID “=9<* & yjage Sog s L

‘f = ¥ 0 e

o T
g Al={p ¥ R i 2 LA B e 2V B
* Alternatively | if 2 TR R is a transition of M, then we write &~ 7+ & b= azlp £ 4#1

Prome e BTG i r}\ “:
Maﬂs that the ID \ké{f(a _:{.- yields :}.t kg ‘j

* In other words, when two IDs are related by the relation - we say that the first one yields the
(or the second is the result of the first) by one move.

* IFIDj results from IDi by zero, one or more (finite) moves then we 3’"’“'{ If the TM M is under
then the subscript M can be dropped from M or =)

Special Boundary Cases

Hap PRINCIPRL

PRINCIPAL™
™a Raajan College of Engg. # &,
savathinudur, Karaikudi - 830 3u
Sivagangai Dist. Tamil Nadu

J
one, or maore moves will be reprasented b)J ‘
i

i~

st

UNIT V- UNDECIDABILITY

UNSOLVABLE PROBLEMS AND COMPUTABLE

Design a Turing machine to add two given integers.

Solution:
Assume that m and n are positive integers. Let us represent the mput as 0" R0",
If the separating B is removed and 0°s come together we have the required
OUIPUL, M + 7 is unary,

(i) The separating 8 is replaced byao.
{1i) The rightmost 0 is erased i.e.. replaced by B.

Let us define M =({94.491.95.95.9,}, {0}, 0.81.6,4,. {0,1) 8 is
defined by Table shown below.

Tape Symbol
State 0 B
@ (g;0.R) (7,.0.R)
% (g;.0.R) {(¢>.8.1)
4 (g, B. L) —
43 (g30.L) (44, B.R)

changes state to g,. On reaching the right end. it reverts, replaces the rightmost
by Bt moves left uniil it reaches the beginning of the input string. It halts at
denate g,

(ii) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?
(iv) Does (M) contain a string of length k, for some given k?

(v) Do two Turing machines M1 and M?2 accept the same languaﬁgzi ce AL“':"T“;“;,
. ~ellazs of ERQQ.
3 Raaiah “-’:‘;!;U&u: di < 63‘\‘, =
: " ninudur, Karalkus :
il ‘f**'i?’fa*gfnd;;i Dist. Tamil Nadu
|

It is very obvious that if there is no algorithm that decides, for an arbitrary given
Turing machine M and input string w, whether or not M accepts w. These

problems for which no algorithms exist are called “UNDECIDABLE” or
“UNSOLVABLE".

Code for Turing Machine:

Our next goal is to devise a binary code for Turing machines so that ecach TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, Af;." To represent a TM M = (Q, {0, 1},T,8,q1, B, F) as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are ¢;,43,. ... g- for some . The start state
will always be ¢, and ¢ will be the only accepting state. Note that, since:
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

¢ We shall assume the tape symbols are X;, X5, ..., X, for some 5. X,
always will be the symbol 0, X, will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

o We shall refer to direction 1. as D, and direction & as Ds.

a Rasja Sl
sy mtirip L '\: Hual -t
Alnaravatnipuaur, | Nad

Sjvagangai Dist. Tami

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that LM = Ly.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function 4. Suppose one transition rule
is 8(gi, X;) = (g&, X1, Dy, for some integers 4, j. k, I, and m. We shall code
this rule by the string 011071010/ 10™. Notice that, since all of 4, §, &, I, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

C1110511 -- - Cp 4 110,

where each of the O is the code for one transition of M.

o PRINCIPAL
4 haagfan Coliege %
Araravathinpdu bl Ez‘
Seavallipudur, Karailky; .

Sivagangai Dist. Tamit Nayy

Diagonalization langu age:

¢ The language Lg, the diagonalization language, is the set of strings w;
such that w; is not in L(Af;).

That is, Ly consistg of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason Lg is called a “diagonalization” language can be seen if we
consider Fig. 9.1, This table tells for all i and J» whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”! W may
think of the ith row as the characteristic vector for the langnage L{M;); that
is, the 1’s in this row indicate the strings that are members of this language.

I

1.3 5 g

g 1D
LglrsaNG B
" ate waNg
£ oale 1

Diagonal
Proof'that Ld is not recursively enumerable:
o PRINCIPAT™~—
2! Nagju Ragjan o

Lollege of ;
-“"-mfﬂi‘avazh;p ; wHliege of Engg. o

PUCL Karaikugy -
Sivagangai Dis - 630 o1,

Theorem 9.2 : Ly is not a recursivelv enumerable language., That is, there is
no Turing machine that accepts Lg.

PROOF: Suppose Ly were L{M) for some TM A1, Sinece Ly is a language over
alphabet {0, 1}, M would be in the list of Turing machines we have constructed,
since it includes all TM's with input alphabet {0, 1}. Thus, there is at least
one code for M, say i: that is, M = M;.

Now, ask if w; is in Ly,

e fw;isin Ly, then M; accepts w;. But then, by definition of Ly, w; is not
I Lg, because Ly contains only those w; such that My does not accept
uty,

* Similarly, if w; is not in Lg, then M; does not accept wy, Thus, by defini-
tion of Ly, w; is in Ly.

Since w; can neither be in Lq nor fail to be in La, we conclude that there is a
contradiction of our assumption that M exists, That 8, Lq is not a recursively
enumerable language.

Recursive Languages:

We call a language L recursive if I, = L{M) for some Turing machine A such
that:

L fwis in L, then M accepts {(and therefore halts).

2. If w is not in L, then Af eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language L as a “problem,” as will be the case frequently,
then problem Z is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.

P

s 2zja Raajan College of Engr .
swoaravathipudur, Karaikudi - 630 4
Sivagangai Dist. Tamil Nadu

Theorem 9.3: If L is a recursive language, so is L.

PROOF: Let L = L{M) for some TM M that always halts. We construct a ™
M such that T = L(3) by the construction suggested in Fig, 9.3. That is, M
behaves just like A7, However, M is modified as follows to create M-

1. The accepting states of M are made nonaccepting states of A with no
transitions; i.e., in these states 3 will halt without accepting.

2. M has a new accepting state r; there are no transitions from r,
3. For each combination of a nonaccepting state of A7 and a tape symbol of

M such that M has no transition (i.e., M halts without accepting), add
a transition to the accepting state r.

- Reject — Reject

Since M is guaranteed to halt, we know that 37 is also guaranteed to halt,
Moreover, M accepts exactly those strings that M does not accept. Thus A
accepts L. O

T.hmmm_ 8.4: If both a language L and Ats complement are RE, then L is
recursive. Note that then by Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 94. Let L = LM and T = L(M;).
Both M; and A% are simulated in parallel by a TM M. We can make Ma
two-tape TM, and then convert it to a tne-tape TM, to make the simulation
easy and obvigus. One tape of M simulates the tape of Ay, while the other tape
of M simpulng Bk tape of My. The states of M, and My are vach components

of thesstate of
B
1=
\% &Y, —
e PRINCIPAL ™.
_ = Raaja Raajan Coilege of Engy. & ...
Universal Language: Amaravathipudur, Karaikudi - 630 301

Sivagangai Dist. Tamil Nadu

We define L,,, the universal language, to be the set of binary strings that
encode, in the notation of Section 9.1.2, a pair (M, w), where M is a TM with
the binary input alphabet, and w is a string in {0+ 1)*, such that w is in L{A).

That is, L, is the set of strings representing 2 TM and an input accepted by
that TM. We shall show that there is a TM U, often called the universal Turing
machine, such that L, = L(U). Since the input to U is a binary string, U is
i fact some M in the list of binary-input Turing rmachines we developed in

Undecidability of Universal Language:
Theorem 9.6: Ly is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 93, I, the complement. of L,, would also be
reeursive. However, if we have a TM M to accep: L., then we can construct a
TM to accept Ly (by u method explained below). Since we already know that

Ly is not RE, we have a contradiction of our assum ption that L, is recursive.

Hypothetical — Accept —T Accept

W ™1 Copy [* wll]lw -=~ algorithm
! M for Lu ™ Reject —p—= Reject
M’ for L&’

Figure 9.6: Reduction of Lito Iy
Suppose L{M) =T, As suggested by Fig. 9.6, we ean modify TM M into
a TM M’ that accepts Ly as follows,

_ P
=" \a31a Ragian 0o
fan LOllap:
Amarava!hi;:.z.-a,., 92 Of En

Sivaga

o o N2M8ikudi . g3 5 -
NGai Dist. Tamil Nagh,

1. Given string w on jts input, A changes the iuput 10 wlllw, You may,
as an exercise, write a TM program to do this Slep on a single %:ap;:,
However, an Casy argument that it can he done is to use a second tape to
COpy w, and then convert the two-tape TM to a one-ty pe TM. |

2. M’ simulates M on the new input. If w is w; in cur enumeration, then
M’ determines whether M, accepts wi. Since M accepts I, it will accept
if and only if M; does not accept wy; le., wy isin L.

Thus, M" accepts w if and only if w is in Lq. Since we know M7 cannot exist

by Thearem 9.2, we conclude that L, is not recursive.

Problem -Reduction : If P; reduced to P2,

Then P2 is at least as hard as P1. Theorem: If P1 redyces to P2 then,
* IfPI is undecidable the so is P2.
* IfP1is Non-RE then so is P2.

Post' s Correspondence Problem (PCP)

e i ;
SR P?x;séuir”ﬁ.a_ '
«. 2918 Ragiap, ¢, fE
=133. & Je.

s kUG - 830 30
<= SE Tamit Mo

7 s

VIVINOLOY dLINII DLLSININYALAA-NON| V' INIHSYVHAV AR

TTOVOIBISTI6

V.LVINOLOV ALINIA DLLSINIAYALIA-NON

S VIHLIAVd

120016 18TI6

VLIVIWOLNY J.LINI JILLSINIANALIAA-NON

A VHLIHLIAIN

0Z0P01615C16

01

VIVINOLNV ALINIA DLLSININYALAA-NONINVANHA SV ATHLIN

610701615216 -

L VIVINOLNV LINIA DLLSINTAYHLIA-NON VAVINNMINHLOW| 810¥01615216

6 VLVINOLNV HLINIA DLLSINIAYALIA-NON| L'VAIAVINHLOW| L10¥0161SC16

L VIVINOLAV HLINIA DLLSINTANYELAA-NON| ¥ VNNVIHSIONW/| 910¥0161S216

3 VLVINOLNY H.LINTI DLLSININYI LAA-NON ATVIVOININVIN| SLOFOT6ISTI6

6 VLVIWOLNY FLINLI DLLSINIARIALIA-NON A'THZIATVAVHA| v10v01616T16 | €

8 VIVINOLNYV HLINI OLLSINIANYE LIA-NON O'ADNHI| €10¥0161STI6 | TI
8 VLVINOLNY HLINII DLLSININYA.LAU WHSHANIA| ZI0F0161ST16 | 11
3 VIVINOLOY HLINIJ DLLSININYILAA] VANIASVI VNAAd| 110+0161ST16 | 01
8 V.LVINOLNYV J.LINII DLLSINIWITLAQ V 'VILLINAd| 010¥0161SCI6 | 6
L VLVINOLNV JLINIA DLLSINTANH. LA S'NHHANAVZY| 600+01615T16 | 8
L VLVINO.LNV JLINIA DLLSINIANMALAA DAVIANY NNV 800v0161ST16 | L
L VLVINOLNY HLINIA DLLSININYHLAQ SINVOVHZVAIRIY| 900+0161S216 | 9
L VLVINOLNY TLINIA DLLSININYA LA ANHLAWINY| S00F0161SC16 | S
L VILVINOLNY HLINI DLLSINIANYALAA I'NVAVNILY| $00¥0161SC16 | +
L VLVINOLNY GLINII DILSINIANMA LA AVAVNIEY| €00v0161ST16 | €
01 VLVINOLNV JLINI DILSININYALAA S'VHSYIFV| T00¥0161SC16 | T
8 V.ILVINOLNV JLINLL DTLSINIANALAA A'THLIVV| 100F01615T16 L

"ON

SMUVIN

J1dOL INFWNDISSY

Juapn)g a1y Jo swey

wny 89y

| 19)SAWdS A - ' 1A I1I
T0TOTSLHHLYVA AALLINGNS
NOILLVLAdINOD 40 AMOAHL LOHrdns

120T0T0 A LYA NIATD

ONIHTIANIONT ANV DNAIOS YTLNJINOD 40 INTWLIVIAA

IANIVIAV “UNAAJIHLVAVIVIAV

ADOTONHOAL ANV ONRITANIONE 40 AD9TTIOD NVIVVH VIVVY [IS

MPEN ey

..,mﬁ 1ef
2101 1BDE Ay
€ Nea - 1pn TT

\,M_.m.,_mv..m ..,MNJ_UD (it pes

“UT 40 363110 Lpfaa . CHEUY

1)] o,
SHUD ﬂ_mu.ﬁm.,l..../fh

. mﬁﬁf e

TVATSNRId

doH

L VIVINOLNY 40 NOLLVZININTA ANV HONATYAINO ATVINWVAIVTIIA| 1€0#0161ST16 | 6T
3 VLYWOLNVY 40 NOLLVZININIA ANV AONTTVAINOI V'VHLAMS| 0€0¥01615T16 | 8T
3 VLVINOLOY 40 NOLLVZINININ ANV FONTTVAINOA [THLVMS| 6T0V0161€T16 | LT
0l VIVINOLNV A0 NOLLVZININIAN ANV FONATYAINOA VIHAJINIIS| 8T0¥0161ST16 | 9T
L VLVINOLNV 40 NOLLVZININIA (INV AONATYAINOH N'VAIVHINMOS| LTOV01615216 | ST
8 VIVINOLNY 40 NOILVZININUA ANV FONATVAINOH d' TAJAVIOOH.LNHAS| 92001615216 | #T
6 VLVINOLNY 40 NOLLVZININIA ANV GONATYAINOT S'HSIHLVS| ST0¥0161S2I6 | €T
0T VLVINOLNY 40 NOILVZIWINIA ANV FONTTVAINOA HIIAVY| €T0P0161ST16 | TT

SRI RAAJA RAAJAN COLLEGE OF
DEPARTMENT OF COMPUTE

ENGINEERING AND TECHNOLOGY
R SCIENCE AND ENGINEERING

NAME OF THE STAFF: V.MANJU CLASS: Il -cSE

NAME OF THE SUBJECT: CS8501 THEORY OF COMPUTAT] ON

SEMINAR GIVEN DATE: 18.10.21

SEMINAR TAKEN DATE: 22.10.21

W NAME OF THE STUDENT
ABIKSHA §

NFA TO DFA

REGULAR LANGUAGE

(&%) SRIRAAJA RAAIAN COLLEGE OF ENGINEERING & (D)
- TECHNOLOGY - <

AMARAVATHIPUTHUR POST, KARAIKUDI - 630301
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NAME OF THE STAFF : Mrs.V.Manju, AP/CSE CLASS : III CSE
NAME OF THE SUBJECT : CS8501 THEORY OF COMPUTATION
SEMINAR GIVEN DATE : 18.10.2021

SEMINAR TAKEN DATE : 22.10.2021

S.NO. NAME OF THE STUDENT TOPIC
1 S.ABIKSHA NFA TO DFA
2 B.RAMII REGULAR LANGUAGE =

o
P(de 6‘:r

Sy a‘"dﬂga. '

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOTY
Department of Computer Seience & 110t ing
CS8501-TOC INTERN A

PART-A (10%2=21

1. Define inductiveproof,

2. Define the term epsilon transition.

3. Create a FA which checks whether the given binary number is even

4. Differentiate between DFAandNFA.

5. What is proof by contradiction?

6. What are the applications of context free language?

7. What is a Regular expression?

8. Construct a DFA for the regular expression aa*bb*,

9. Construct NDFA for all strings over alphabet z={a.b} that contain: 1 subes ring ‘ol
10. What is {10, 11}? Write at least first seven terms.

PART-B (13*5=(7)
11. a) Construct a DFA equivalent to the NEA. M=({p.q.r}.{0,1}.8.p, fq.5)) Where § i+ el in the
following table.

0 Eca
p {9.5} [fa) |
q {r} fq.r] |
r {S} | =|‘| v
g e lE T T

(OR)

b) Prove that“A language accepted bysome DFA i(1] s accepto! ! v NFA

12. a) Consider the following &-NFA for an identifier .Consider the g-closure of each sate 10 vive
it’sequivale A.

(OR)

b) Explain about Finite Automataand Regular Expressions.

13. a) Construct an NFA without e-transitions for the NI-A viver Lo

ene’s theorem, ———85moA; °
eore “PRINCIPAL™
- 282 Ragjan College of En:
Marqvathipadu?, Karaikudi -

Sivagangai Dist, Tamil Nadu

14. a) Construct finite automata to accept the string {0.1/ thal aliwvive crds with 00,
(OR)
b) Obtain the regular expression for the finite autonii:.
15. a) Convert the NFA with & with its equivalent DFA.
(OR)
b) Examine whether the language L= (Unlnfn>=1;1 is-reaular or not? tustify your answer,
PART-C (1*15=15)
16. a) Construct minimized automata for the following automata to deline the same
language.
2q0 ql q0
ql q0 q2
q2 q3 ql
*q3 q3 q0
q4 q3 qs
q5 q6 q4
q6 qs q6
q7 q6 q3
(OR)
b) Construct the following e NFA
to DFA.
states | ¢ a b C
—
el [] @
1o | e | o | e
(% *ral¥q} {r}) b D
A‘A"’% i LERINCIPAL
STeeF Tlc H o)

Sr Raaja Raajan College ors) | /
Amaravathipudur, Karf;_:sum -B3U -
Sjvaganga ;i Dist. Tamil Nadu

=

Department of Computer S

PART-A

1. What is Pushdown Automata?
2. Define Deterministic Pushdown Automati?

3. What is context free language derived from thefillong in

S->aSbS->ab
4. State the pumping lemmafor CFL.
5. What is instantaneous description of PDA (1139
6. Whatis Turing machine?
7. Define moves of a Turing machine.
8. What is regular grammar?
9. Define LinearBounded Automata.
10. What is Halting Problem?

PART-B

11. a) Discuss about the basic definitions of | 1 ing N:

(OR)

b) Prove that “If L is a context free Language. thea there

M,suchthat L=N(M)and“If Lisn(m) for soic P14

acontextfreelanguage”.

12. a) Explaintheprogra.mmingtechniquesfor'! uringMacliine

(OR)

b) State the pumping lemma for CFL and Sl (o (!
CFL.

13. a) ConstructthePDAtoacceptthe followingl={wwit!h
(OR)

b) DiscussabouttheMu]tiheadandMulu’Tzlpu Fuiingiiachi

14. a)i) Convert the Grammar

S->0SI|A

esign aPDA that accepts the same Lo oo
(OR)

b) Describe the chomskian hierarchy of 1.

SRI RAAJA RAAJAN COLLEGE OF ENGINEE

CS8501-TOC INTERN

NG & TECHNOLOGY

13 :m-vring

(10%2=20)

erammar?

(5%13-65)

exists a PDA

e s

“onstruction,

nnn,

namage L={a b ¢ |n==I}isnota

tystack.

F'- R H H'l Ci ';::‘”\v.i-

Sii naaja Ragjan Coilege Ol -':;_..9630 .
Amaravathipudur, Karaikudi -

;agangai Dist. Tamil Nadu

Sivag

15. a) Design a PDA accepting L= {a"b" |1 ||

1
|

(OR)

b) Explain Halting Problem.Is it solvable or uns

PART-C

16. 2) i) Design a Turing Machine to accept the I

aly

Alphabetset. Trace the strings “01017 and * | (1

ii) Design aTurin g Machine to perform additio
(OR)

b) Construct aTuring Machine to perform proper s

i

alvalil

em? Discuss.

stbtraction,

Iuii\Uul NG

Tamil Nady

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering
CS8501-TOC MODELI1

PART-A (10%2=20)

1. What is relation?

2. What is equivalence?

3. What are the types of derivation?

4. Whatis CFL?

5. State the Pumping lemma for CFL.

6. What are the closure properties of CFL’s

7. What is Turing machine?

8. Define instantaneous description of turing machine.
9. What is recursive enumerable and recursive set?
10. What is decidable problem or decidability?

PART-B (5%13=65)

11. a) i).Explain if L is accepted by an NFA with e-transition then showthat L is accepted by an NFA
without e-transition.(6)

i) Construct aDFA equivalent to the NFA M=({p.q,r},{0,1}.5,p,{q,s}) Where § is defined in the

followingtable.(7)
0 | 1
p {q.s} {q}
q {r} {q.r}
r {s} {p}
8 5 {p}
(OR)

b) Prove for every n>=1 by mathematical induction 2 ()= {n@n+1)2}.

12, a) DemonstratehowthesetL={abn/n>=I tisnotaregular,
(OR)

b) Express that the regular languages are closed under:(a) union(b) intersection (c) Keene
Closure (d) Complement(¢) Difference

13. a) i). Discuss about PDA and CFL Prove the equivalence of PDAandCFL.(6)
ii). IfLisContextfreelanguagethenprovethattherecxists PDAMsuchthatL=N(M).

(OR)

L fle string abaaba. Give Left most derivation (3)ii) Rightmostderivation (3) iii)

ivati balree (3) iv)For the string abaabbba,find the rightmost derivation.(4)

o
¢ gs%bfoll0wir|ggramma:rGintoGreibacl1N0rmalI~‘orm (GNF),

A->a ﬂ’agaﬁ ST 4..‘“-;’ = OJU 3{‘1.
(OR) ROt T gy 2V

b) Illustrate the Turing machine for com puting f(m, n):m-n(pmpersubtraction).

15. a) i). Describe about the tractable and intractable problems. (7)
ii) Identifythat“MPCPreduce toPCP”. (6)
(OR)

b) Discuss post correspondence problem.Lety'= {0, 1}.Let A and B be the lists of three strings
each, defined as

ListA
wi

1
10111
10

G | B | e | =

i) Does the PCP have a solution? (7)

ii) Prove that the universal language is recursively enumerable.(6)

PART-C (1*15=15)

16. a) Tabulate the difference between the NFA and DFA Convert the following e-NFA to DFA.

states £ a b c

P S || @ [
q o [(@ | {7 | @
T @B ¢ [@

(OR)

b) Explain the DFA Minimization algorithm with an example.

HOD

PRINGIPAL -

i \lege of £M:
213 Raajan Col jedt i,

St Ra«:ﬁ;athipudur, ?"\a@mt_‘j‘;m.ﬂ

e cjvagangal Dist, Tamit N

SRT RAAJA RAAJAN COLLEGE OF ENGI
Department of Computer Scien

NEERING & TECHNOLOGY

ce & Engineering
CS8501-TOC MODEL 2

PART-A (10%2=20)

State the Principle of induction.
Construct aDFA that acce
Differentiate regular exp
Define free grammar,
Define parse tree with an example.

What is ambiguous grammar?

State pumping lemma for CFL.

What is Turing machine?

What is recursively enumerable language?
. State Rice’s theorem.

pls input string of 0,s and 1’s that end with 11.
ression and regular language.

SOPENAUE LN~

PART-B

. a) Construct a DFA equivalent to the NFA. M=({p,q.r},{0,1},5,p,
following table.

(§%13=65)
{q.s}) Where & is defined in the

0 1
p {qs} {q}
q {r} tq.r}
r {s} {p}
B = {p}

(OR)

b) Prove that“A language accepted by some DFA if L is accepted by NFA.

12. a) Construct a regular expression for the following DFA using kleene’s theorem.
(OR)
b) (i) Discuss on regular expressions.

(i1) Discuss in detail about the closure properties of regular languages.

13. a) Describe the chomskian hierarchy of Languages,

(OR)

b) Construct the PDA to accept the following L={ WWwR by emptystack,

: DiscussabounheMultiheadandMu]tiTape TuringMachine.

(OR)

PRINCIPAL
x lama of ENOC
Sri Raaja Raajan Coliege o ‘E.i ==

- E 3

_:'E -

Amaravathipudur, K

Qjyagangai Dist. |

e

i

15. a) When we say a problem is decidable? Give an example of undecidable problem

(OR)
b) How to prove that the Post Correspondence problem is Undecidable.

PART-C (1*15=15)
16. a) Construct minimized automata for the following automata to define the same
language.
- Ciq0 ql q0
ql q0 q2
q2 q3 ql
*q3 q3 q0
q4 q3 q5
95 q6 q4
g6 qs q6
q7 q6 q3
(OR)
Construct the following £ NFA to
DFA.
tates E a b c
p @ | {p} | {q} {r}
¢ (| fa | {3 | (o
({3 o ®
e |
STREF - Tic HoD

P-RiMCiP,fﬁ
Sp Ragja Raajan College of Engg-
Amaravathipudur,

Qjyagangal Dist. Tarnil Nadu

Karaikudi - 634 -~

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering

CS8501-TOC
INTERNALTI - ANSWER KEY
PART-A (10%2=20)
1. Statement P(n) follows from
(a) P(0)and
(b) P(n-1)implies P(n) for n>=1

Condition (a) is an inductive proof is the basis and Condition (b) is called the
inductive step.

2 An epsilon transition (also epsilon move or lambda transition) allows an automaton
to change its state spontaneously, i.e. without consuming an input symbol. It may appear in
almost all kinds of nondeterministic automaton in formal language theory.

3. correct automation needs to remember whether the Jast character read was 10 so we
need to state the initial state and accepting state 10 is heat transferred accepting state are
remain there if we wear in the accepting state already.

hawve clestQrnec e Follovwimes

S Bimnsvy Strirmg i= sevesr IF it f= Ertcdinmog witis 3 ol =aiad i
T emprveliricy wvwithy T i herves s slienct Thylss_ lewsy i rigifst =

HETAATT B

<.
Deterministic Finite Automata Non-Deterministic Finite Automata
Fach transition leads to cxactly one state A transition leads to a subset of states i.e.
balled as deterministic some transitions can be non-deterministic.
fﬁ ; Accepts input if one of the last states is in
3{7"‘ Final,
ﬂlg.i Cv% i “—‘; i
E{fﬁ S Bac&iﬁﬂ(ing is allowed in DFA. Backtracking is not always possible.
\ %} ; .\\,_3 y e
G equires more space. Requires less space.

5. In logic and mathematics, proof by contradiction is a form of proof that establishes
the truth or the validity of a proposition, by showing that assuming the proposition to be false
leads to a contradiction. Proof by contradiction is also known as indirect proof, proof by
assuming the opposite.

6. Context Free Grammars are used in Compilers (like GCC) for parsing. ...

Context Free Grammars are used to define the Hij gh Level Structure of a Programm ing
Languages.

(i A regular expression can also be described as a sequence of pattern that defines a
string. Regular expressions are used to match character combinations in strings. String
searching algorithm used this pattern to find the operations on a string,

8. L={CE,aabb,abab,baba,baab,bbaa,aabbaa,

L L Y D T
Amaza_va%hipu-:f ur, Karaiiue, - vou o .
“¥agangai Dist. Tami| Nady

10. Leta=35and b= 10 ... Write atleast first Seven terms. ... 11) Write a RE which
contains L having the strings which have at least one 0 and 1.

PART-B (13*5=65)

11. a) The equivalent DFA is defined by
({4} 'P-Q1:5,Pq,PL.ps,qr,qs,15,pqr, pgs, prs,qrs,pqrs}, 0,1},

delta', p, {s:ps,qs,rs,pqs,prs,qrs,pqrs}), where delta’ is defined
by the chart below.

o &
plpg p
gr r
s {}
s|s s
pql pqr pr
prlpgs p
ps| pgs ps
qrjrs r
gs|rs rs
1s| s s
parlpars pr
prs| pgs ps
qrs| rs rs
pqrs|pgrs prs

b) For any DFA D, there is an NFA N such that L(N) = (D), and
For any NFA N, there is a DFA D such that L(D) = L(N).

12. a) The method for converting the NFA with ¢ to DFA is explained below —

Step 1 — Consider M={Q, X, 6,90,F) is NFA with £. We have to convert this NFA with & to
equivalent DFA denoted by

MO0=(Q0.%, 60,q0,F0)
The

WeAtill obtain 3 transition on [p 1,p2,p3,...pn] for each input.
6 0([p1.p2,p3,..pn],2) = e-closure(3(p1,a) U OBLaN. d(pn,a))
= U (i=1 to n) e-closure d(pi,a)

o PRINCIPAL !
Wherea isfnput €2 Sri Raaja Raajan College of Engg. & ™7

Amaravathipudur, Karaikudi -630 3u i
Sivagangai Dist. Tamil Nadu

Step 3 — The state obtained [p1.p2,p3,...pn] € Q0.

The states containing final state in pi is a final state in DFA

b) Finite automata are formal (or abstract) machines for reco gnizing patterns. These machines
are used extensively in compilers and text editors, which must reco gnize patterns in the input.

Regular expressions are a formal notation for generaling patterns. This notation is used
extensively in programming language manuals (used to describe legal patterns of input) and in
command languages (such as the UNIX shell, where it is used to describe patterns for naming
files, etc.)

Canbe | Regular L. Canibe
Converted ' /| expression corverted to
"
Deterministic NFAwith
finite g MOVES
oaiinstE b
Canbe Canbe |
converted e converted to
NFA without
& Ioves

13. a)Step 1 - Find out all the e-transitions from each state from Q. That will be called as
e-closure(qi) where, qi €Q.

Step 2 — Then, §1 transitions can be obtained. The 1 transitions means an e-closure ond
moves.

Step 3 — Step 2 is repeated for each input symbol and for each state of given NFA.

Step 4 — By using the resultant status, the transition table for equivalent NFA without € can be
built.

NFA with € to without ¢ is as follows —

onvert a 1 .4.‘ ar expression to an NFA, we first convert it to an ge-NFA, then convert
Al

N A i INFA, except that we are allowed to include “epsilon transitions". In a

normal NFA oD :_A‘;" every character in the string causes a single transition in the machine,

and each transition in the machine "consumes" one character. Epsilon transitions allow the i

machine to transition without consuming a character. They make it more convenien{)_%gﬁbﬁiﬂ“' gl

machines. <ty CONE i -

—

b) To find the regular expression for the given automata, we first create equations of the given
form for all the states as follows —

qI=qlal1+q2021+--memmmeev +qnanl+e
92=q1012+q2022+----nncme-- +qnan2
qn:q] al n+q2a2n+ ------------ -l-qnann'

By repeatedly applying substitutions and Arden’s Theorem we can express qi in terms of a ij’s
- To get the set of strings recognized by FSA we have to take the union of all qi’s
corresponding to final states.

15. a) Step 1: We will take the e-closure for the starti ng state of NFA as a starting state of
DEA. ...

Step 2: If we found a new state, take it as current state and repeat step 1.

Step 3: Repeat Step 1 and Step 2 until there is no new state present in the transition table of
DFA.

b) To prove if a language is a regular language, one can simply provide the finite state
machine that generates it. If the finite state machine for a given language is not obvious (and
this might certainly be the case if a language is, in fact, non-regular), the pumping lemma for
regular languages is a useful tool.

A

/ § /f’-f? PART-C (1*15=15)

277 |
\ L6, A: Remove all the states that are unreachable from the initial state via any set
s the.1 _-:"; fDFA.
WETRYZ

e
Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states,
and T2 contains non-final states. BRINGIPAL™

i1 e j : Sri Ragja Raajan CC.[
Step 4: Find similar rows from T1 such that: ravathipudur,

1.6(q,a)=p
2.8(r,a)=p

That means, find the two states which have the same value of a and b and remove one of them.
Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.
Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the
transition table of minimized DFA.

16. b) Step 1 — Consider M={Q, X, 8,q0.F) is NFA with . We have to convert this NFA
with € to equivalent DFA denoted By

Step 2 — We will obtain § transition on [P1.p2,p3,... pn] for each input. ...
Step 3 — The state obtained [pPL.p2,p3.... pn] € QO

o

HOD

PRINCIPA

Sri Ragja Raajan Col
Amaravathipudur, Karai
Sivagangai Dist. Tamil Nadu

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering
CS8501-TOC

INTERNAL2 - ANSWER KEY
PART-A (10%2=20)

L. Pushdown Automata js a finite automaton with extra memory called stack which
helps Pushdown automata to recognize Context [ree Languages. A Pushdown
Automata (PDA) can be defined as : Q is the set of states. }'is the set of input
symbols. T is the set of pushdown symbols,

combination of input symbol, state, and top stack symbol. This is where it differs
from the nondeterministic pushdown automaton.

3. S->aSbS->ab

S->aabb S-> ab

S->aabb

4. Pumping Lemma for CFL states that for any Context Free Language L, it is possible
to find two substrin gs that can be 'pum ped' any number of times and still be in the
same language.

6. A Turing machine is a mathematical model of computation that defines an abstract
machine that manipulates symbols on a strip of tape according to a table of rules,

7. A Turing Machine (TM) is a mathematical mode] which consists of an infinite length

. fape qui_/ided into cells on which input is given. ... After reading an input symbol, it is
/2 Teptadd with anott bol, its internal state is changed, and it fi I
v Pl -. 1th another symbol, its interna state 1s changed, and it moves om one ce

>/t ochior left.
Gl % 1
G\ Snitagis regular if it has rules of form A ->aor A > aB or A - ¢ where gisa
NS Apeeali3sibol called NULL,

9. A linear bounded automaton is a mulfi-track non-deterministic Turing machine with a
tape of some bounded finite length.

Length = function (Length of the initia] input string, constant c)

10. In computability theory, the halting problem is the problem of determining, from a
description of an arbitrary computer program and an input, whether the program will
finish running, or continue to run forever.

PART-B (13%5=65)

11. a) A Turing machine is a theoretical machine that manipulates symbols on a tape
strip, based on a table of rules: Even though the Turing machine is simple, it can be
tailored to replicate the logic associated with any computer algorithm. It is also
particularly useful for describing the CPU functions within a computer.

Alan Turing invented the Turing machine in 1936, and he referred to it as an "a-
machine" or automatic machine.

« Tape: A tape that is split into cells, one beside the other. Every cell includes a symbol
from a certain finite alphabet. The al phabet includes a unique blank symbol as well as
one or more other symbols. The volume of tape required for the computation is
always included in the Turing machine.

» Head: A head that is able to write and read symbols on the tape. In certain models, the
head moves while the tape is fixed.

e State register: A state register to store the Turing machine's state. There is a special
start state through which the state register is initialized.

* Finite table: A finite table (sometimes referred to as a transition function or an action
table) of instructions, which are generally quintuples, but occasionally quadruples.

b) Proof:

LetG=(V,T,P,S) beaCF GinGreibachNormfromgenerating L

X LetMisdefinedas
MO({q},T,V,0.q,5,0)

Where

O(q, a,A)C(q, 1)
WheneverA DaOisinp

the PDA M simulates leftmost derivations of Gisin GNF each

cntential

forminaleﬁmostderivationconsistofastringoﬁerminalsxfollowedby

astringof variables.

* M stores the suffix on the left sentential form on its stack
after processing the prefix.

12. a)The Turing machine mathematically models a machine that mechanically OPRIRIES o p =

on a tape. On this tape are symbols, which the machine can read and write, one Roae of [

Amaravathipudur, Karaikud
Sivagangai Dist. Tamil Nadu

time, using a tape head. Operation is fully determined by a finite set of clementary

instructions such as "in state 42, if the symbol seen is 0, write a 1; if the symbol seen
is 1, change into state 17; in state 17, if the symbol seen is 0, write a 1 and change to
state 6;" etc. In the original article ("On computable numbers, with an application to
the Entscheidungsproblem", see also references below), Turing imagines not a
mechanism, but a person whom he calls the "computer", who executes these
deterministic mechanical rules slavishly

b) Lemma

Let L be any CFL. Then there is a constant n, depending only on >,
such that if z isinLand

|z| Onthe
nwemay
Wwritez=
UVwxy
such
that
1)|Vx| 01

1) VwxOn
2) forallld uv'sxlyisinl,

Proof:

U LetGbeaCFGin CNF geeratinglL{[1}

U IfZis inL(G)andZis long,then anyparse treeforzmustcontainalongpath
0 Weprovethisby mathemticalinduction oni,thatpath oflengthfor z,

O Iftheword generatd byaCNF grammar has

nopathoflength greatm*thanl,thenthewordlengthisnogreater than2!"1

i=listrivial
Sincethetreemust beoftheform
ductionstep:

&l i
) &' If there are no paths of length greater than i - 1 in trees T1

and T2, then meneesgeneratewordsole"loffewersymbols

0 Thustheentiretrcegeneratesawordnolongerthan2"1 —— PRINCIPAL™—

~- Bamia Razian -__,. fEng
/K ra udur, Karaiikudi - bov ov
aala -.i_-_.\ I-,-‘___ o
Sjvagangai Dist. famil Nadu

51 08 |

=]

d

va:t(}l‘lzmekvariablesandlaam:2k
Ifzis in L(G) and | z| O n, then since [z] k-1 » ANy parse tree
for z must have apathoflengthatleasti+1.

But such a path has k + 2 vertices, and all except last vertex
are labeled byvariables.

Thentheremusthe
twovariablesV andV2onthepathsat; styingthefollowin g
conditions.

1. TheverticesV} andV2bothhavethesamelabelsayA

2 Verteleisclosertotherootthauvertchz

3. Theportion ofthepath fromV [totheleafisof] engthatmostk +1
NowthesubtreeT] andT?
isthesubtreeeneratedbyvertex\’zandLetzzistheyieldof

subtreeT?2

Thenwecan write

21=237274

Z3and Z4cannotbothbe

i Sincetheproductionusedinthcderi vationofz] mustbeofthefor
mA[] BC,forsomevariahleBandC

The Subtree T2 must be completely within either the subtree
generated by B orthesubtreegeneratedbyc.

Example:

G=({A.B,C}, {a,b},P,A)

P {ADBC,BDBA,ADa,B Ob,{COBA}

i - 530 301 ™

if Nadu

13. a)

(e, Zdop o, 0,00p) (o,6/A)

- {c,ats) . (A, Z4zy
9, q

1 9,

PDA accepting wew"

b) Multi-tape Turing Machines have multiple tapes where each tape is accessed with a
separate head. Each head can move independently of the other heads, Initially the
input is on tape 1 and others are blank. At first, the first tape is occupied by the input
and the other tapes are kept blank. Next, the machine reads consecutive symbols
under its heads and the TM prints a symbol on each tape and moves its heads.

each tape and moves its heads,

A Multi-tape T uring machine can be formally described as a 6-tuple (Q, X, B, 5, qo, F)
where —

“Th

Q is a finite set of states

X is the tape alphabet

B is the blank symbol

d is a relation on states and symbols where

8:Q x X* — Q x (X x {Left_shift, Right shift, No_shift })*
where there is k number of tapes

qo is the initial state

p{ghee by Empty Stack: On reading the input string from the initial confi guration
eSOMEPDA, the stack of PDA gets empty. Let P=(Q,), T, 3, 40, Z, F) be a PDA.
¢ uage acceptable by empty stack can be defined as: N(PDA) = {w | (q0, w, Z)

F* (P, & €),q E Q}

— PRINCIPAL

- 103k ()a-i'\.m
o a=isn GO i Engy-
aaja Raajah L& 25~ i - 630 301
Sri R r!-vg-‘h:-f"‘idun Wt m:;; 1’1..3
g g-;.':'a:‘ngi Dist. Tamil Nadu
Vaycaily

b) Chomsky Hierarchy represents the class of languages that are accepted by the different
machines.

Chomsky hierarchy

Hierarchy of grammars according to Chomsky is explained below as per the grammar types —
Type 0 — It is an Unrestricted grammars

Unrestricted grammar — an unrestricted grammar is a 4-tuple (T,N,P,S), which consisting
of —

T = set of terminals

N = set of nonterminal

P =as set of productions, of the form —

V->w

where v and w are strings consisting of nonterminal and terminals.

S =is called the start symbol.

~ Grammar

4 _Crammar acc_eﬁted e J_;anguage accepted Automaton

Type 0 _unrestricted grammar | recursively enumerable ~ Turing Machine
 language

Type 1 ' context-sensitive context-sensitive - linear-bounded

- - grammar ~ language automata

| Type 2 Context-free - Context-free language - Push down automata

" | grammar

Type 3 - regular grammar -~ regular language finite state
f - automaton

¥ Let L be any CFL. Then there is a constant n, depending only on >,
_such that if z isinLand

1) [Vx] Ol — PRINCIPAL
2) IV“'X]: n .f-_':r! Rag'a F;_:*._'::__Eg;g C-‘.{‘-‘I':f‘._;_ S - =

3) foralll] uvisxiyisinL
Proof:

U LetGbeaCFGin CN Fgeerating[. {[1}

U IfZis inl.(G)andZis long,then anyparse treeIbrzmustcontaiualongpath
U Weprovethisby mathemticalinduction oni Jthatpath oflengthfor .

I Iftheword generatd byaCNFgrammar has

nopathoflen gﬂ1greaterthanl,thenthew0rdlengthisnogreater than2i'
Basis:
i=listrivial
Sincethetreemust beoftheform
Inductionstep:

Letl>1

[If there are no paths of length greater than i - 1 in trees 3
and T2, then thetreesgeneratewordsoﬂl"1offewersymbols

O Thusﬂ"leentiretreegervs,ra’[esawordncml0ngerthan2l'1

b) Input — A Turing machine and an input string w.

Problem — Does the Turing machine finish computing of the string w in a finite number of
steps? The answer must be either Ye€s or no.

Proof — At first, we will assume that such a Turing machine exists to solve this problem and
then we will show it is contradicting itself. We will call this Turing machine as a Halting
machine that produces a 'yes” or ‘no’ in a finite amount of time. If the halting machine
finishes in a finite amount of time, the output comes as ‘yes’, otherwise as ‘no’. The
following is the block diagram of a Halting machine —

Input — Yes (HM halts on input w)
Halting

Machine
——* No (HM does not hait on input w)

PART-C (1¥15=15)

16. a) We start with QO state if we get a symbol “a” as input then there should also be “a”
at the ending of the string then only the string is palindrome and we have to verify
that. We first make the current input “a” to B blank and 20 to state Q1 move
rightwards to traverse the string till we reach the end.

/\\ aaR /ﬂ\\ a.a,L
v

bbR \ \ bbi

b) Subtraction of two unary integers
3-2=1
In Turing Machine 3 represents — 111

2 represents: 11

B 1 1 I M] I B

Here B= blank
M= Symbol used two separate two integers

STAEF TlC HoD

ot vessis M

Sri Raaja Raajan Coiiege of Engg. & ™~
Amaravathipudur, Karaikudi- 630 2. .
Sivagangai Dist. Tamil Nadu

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering
CS8501-TOC

MODEL1 - ANSWER KEY
PART-A (10%2=20)

1. A relation between two sets is a collection of ordered pairs containing one object from
each set. If the object x is from the first set and the object y is from the second set, then the
objects are said to be related if the ordered pair (x.y) is in the relation. A function is a type of
relation,

2. An equivalence relation is a relationshi P on a set, generally denoted by “~”, that is
reflexive, symmetric, and transitive for everything in the set. ... Example: The relation “is equal
to”, denoted “=", is an equivalence relation on the set of real numbers since for any x, ¥, Z € R:

3. There are three types of Derivation trees;

Leftmost Derivation tree.
Rightmost derivation tree.
Mixed derivation tree.

4. context-frec language (CFL) is a language generated by a context-free grammar
(CFG). Context-free languages have many applications in programming languages, in
particular, most arithmetic expressions are generated by context-free grammars.

S. Pumping Lemma for CFL states that for any Context Free Language L, it is possible to
find two substrings that can be ‘pumped'’ any number of times and still be in the same language.
For any language L, we break its strings into five parts and pump second and fourth Substring.

6. CFL's are closed under union, concatenation, and Kleene closure. Also. under reversal,
homomorphisms and inverse homomorphisms. But not under intersection or di fference.

7. A Turing machine is a mathematical model of computation that defines an abstract
machine that manipulates symbols on a strip of tape according to a table of rules. ... The
Turing machine was invented in 1936 by Alan Turing, who called it an "a-machine"

8. All syniliolité t of head, State of machine, symbol head is scanning and all symbols
' rhgtamming Turing machine can be done entirely in finite state logic, but
ation on tape.

. &
9. Arg ely ¢l rable language is a recursively enumerable subset in the set of all
possibl i ¢ alphabet of the language. A recursively enumerable language is a

formal language for which there exists a Turing machine which will enumerate @R‘}?J;‘% E:sh:{:\r!ings
of the language. i AL

PN

7 3
TOibi - .

Amaravathipudur, |
Sivagangai DisL. Tamil Nady

-

10. A problem is said to be De

cidable if we can always construct a corresponding algorithm
that can answer the problem correctly.

PART-B

(5*13=65)

11. a)i) In this method, we try to remove all the e-transitions from the given Non-deterministic

finite automata (NF A)—

The method is mentioned below stepwise —

« Step 1 — Find out all the g-
closure(qi) where, gi €Q.

transitions from each state from Q. That will be called as ¢-

* Step 2 — Then, 61 transitions can be obtained. The 81 transitions means an g-closure on &

moves.

* Step 3 — Step 2 is repeated for each input symbol and for each state of given NFA.

» Step 4 — By using the resultant st

can be built.

NFA with ¢ to without ¢ is as follows —

81(q,a) = € - closure (8 (6€"(q.€€),a)) where, §"(q.€€) =

ii) The equivalent DFA is defined by
({{ },p,q,r,s,pq,pr,ps,qr,qs,rs,pqr,pqs,-prs,qrs,pqrs}, 10,1},

delta, p, {s,ps,qs,rs,pgs,prs,q
by the chart below.

et L

800 0
plpq p
qr r
15 {}
si's 5
pq| pgr pr
pripgs p
ps| pgs ps
qrirs r
qs|rs rs
rs| s s
Pqripgrs pr
Prs| pqs ps
qrs| rs rs o
pPqrs|pqrs prsy

|

rs,pqrs}), where delta' is defined

~ Amaravathipudur, K

atus, the transition table for equivalent NFA without &

€ - closure(q)

i Coiege of Engn 4
Ce i | -,'_’\,\j',‘.u’ ‘-"_ = L
araikudi - .

Sjvagangai Dist. Tamil Nadu

b) Let,
pm)F1+2+3+..... .4n
Now, p(1)=1=21.(1+1)=1

So, p(1) is true

Let, us assume that p(k) is true that is
H2 ks =2k L) o (1)
We shall prove that p(k+1) is true
Now,

plt)

=132+, Tk cH)

=k(kt1)yHk+1)

=2(k+1)(k+2)

=2(k+H1)(k+1+1)

So, p(k-l-l) is true.

Now by principle of mathematical induction curve p(n) is true.

12. a) The language a"n b"n where n>=1 is not regular, and it can be proved using the
pumping lemma. Assume there is a finite state automaton that can accept the language. This
finite automaton has a finite number of states k, and there is string x in the language such that n
>k

& o
., H"*—-.....-—-‘T.' [Qaa - -;53;'_ e : nl y !
L= {anTn\fU} and L2 = {bn |n> O})@ Raajan College of Engs

Anaravathipudur

» Karaikudi - 630 301

L3=L1UL2= {an U bn|n> O} is also regular. Sivagangai Dist. Tamil Nady

Intersection

If L1 and If L2 are two regular languages, their intersection L1 [[.2 will also be regular.

Example

Li= {ambn |n> 0 and m > O} and

L2={ambnUbnam |n> 0 and m > 0}
L3=L1NL2={ambn|n>0and m> O} are also regular.
Concatenation

If L1 and If L2 are two regular languages, their concatenation L1.1,2 will also be regular.
Example

Ll={an|n>0}and 1.2 = {bn|n> 0O}
L3=L1.L2={am.bn|m>0andn> O} is also regular.

Kleene Closure

IfL1 is a regular language, its Kleene closure L1* will also be regular.
Example

L1=(aUb)

L1*=(aUb)*

Complement

If 1(G) is a regular language, its complement L'(G) will also be regular. Complement of a
language can be found by subtracting strings which are in L(G) from all possible strings.

Example
L(G)={an|n>3} L'(G) = {an|n <¢ 3}

13. a) i) Equivalence of PDA’s and CFG’s The goal is to prove that the following three classes
of the languages are all the same class. 1. The context-frec languages (The language defined by
CFG’s). 2. The languages that are accepted by empty stack by some PDA. 3. The languages
that are accepted by final state by some PDA. Grammar PDA by empty stack PDA by final
state Figure 1: Organization of constructions showing equivalence of three ways of defining
the CFL’s we have already shown that (2) and (3) are the same. Now, we prove that (1) and (2)
dare same.

ii) L is a deterministic context-free language (DCFL) if and only if there exists a deterministic

PDA M such that L=L(M). The language L={anbn[n>0} is a deterministic CFL. accepts the

given language.
e

—PRINCIPAL™
~~ja Raajzn College of Engg. -. «cuit

wuaravathipudur, Karaikudi - 630 301
Sivagangai Dist. Tamil Nadu

= -

Step 2: If the grammar exists left recursion, eliminate it,
Step 3: In the grammar, convert the given production rule into GNF form.
b) Subtraction of two unary integers
3-2=1
In Turing Machine 3 represents — 111
\

2 represents: 11

el o L e S B R I B

Here B= blank
M= Symbol used two separate two integers

Head

15. a) i)Tractable Problem: A problem that is solvable by a polynomial-time algorithm.
The upper bound is polynomial.
Here are examples of tractable problems (ones with known polynomial-time algorithms):

—Searchinganunorderedlist

—Searchinganorderedlist

—Sortingalist

-M ultiplicationoﬁntcgers(eventhoughthere’sagap)

— Finding a minimum spanning tree in a graph (even though there’s a gap)

Intractable Problem: a problem that cannot be solved by a polynomial-time al gorithm. The
lower bound is exponential.

From a computational complexity stance, intractable problems are problems for which there
exist no efficient algorithms to solve them.

Most intractable problems have an al gorithm that provides a solution, and that algorithm is the
brute-force search.

This algorithm, however, does not provide an efficient solution and is, therefore, not feasible
for computation with anything more than the smallest input.

O “We can prove that any algorithm that solves this problem must have a wors-
AR time that is at least 2" — 1.

ons (all possible orderings) of n numbers. [
= o PANGPAT—
e " RBoniam s 3

of Er

—~Hiargva -
vl =

Sivagarigai Dist = xS
Vagangai Dist. Tamjj Nady

ii) Introduce two new symbol * and $ that are not in input alphabet.
® For upper string of each domino, put * to left of every symbol.
® For lower string of each domino, put * to right of every symbol.

® Add a new domino based on the fir

st domino of MPCP using the above rul ¢s, except that the
lower string has an extra * at its left.

® Add a new domino whose upper string is *$ and lower string is §$.

b) i) This PCP has a solution M=4
11=2, i2=1, i3=1, i4=3,
101111110=101111110

The solution,

i) L, is recursively enumerable but not recursive. Ly is the set of binary strings that consist of
encoded pairs (M, w) such that M is an encoding of a Turing machine and w is an encoding of a
binary input string accepted by that Turing machine.This PCP has

e e

- W - <
5 nﬂ:"'? F?a:mﬂﬁfNC['PAL
R ‘ '{;{I::‘ 'EE'I’TE_‘-}'@ of E; g n
L f,]—,, ; r-"é;?'.‘ 9{5 iy _;"_ L.— L
"Yegangai pjgp Ta)

PART-C (1*15=15)

16. a)

Deterministic Finite Automata Non-Deterministic Finite Automata

Hach transition leads to exactly one state A transition leads to a subsct of states i.e.
talled as deterministic some transitions can be non-deterministic.

Accepts input if the last state is in Final Accepts input if one of the last states is in

Final.
Backtracking is allowed in DFA. Backtracking is not always possible.
Requires more space. Requires less space.

Step 1 — Consider M={Q, X, 3,q0,F) is NFA with €. We have to convert this NFA with ¢ to
equivalent DFA denoted by. ...

Step 2 — We will obtain 6 transition on [pl,p2,p3,... pn] for each input. ...
Step 3 — The state obtained [p1,p2.p3,... pn] € Q0. ...
The DFA diagram is as follows

b) DFA minimization stands for converting a given DFA to its equivalent DFA with
minimum number of states. Suppose there isa DFA D < Q, Z, q0, 8, F > which recognizes
a language L. Then the minimized DFA D < Q. Z, q0. &', F' > can be constructed for
language L as: Step 1: We will divide Q (set of states) into two sets.

Input — DFA
Output — Minimized DFA
Step 1 — Draw a table for all pairs of states (Q;, Q;) not necessarily connected directly [All

are
unmarked initially]

Step 2 — Consider every state pair (Q;, Q;) in the DFA where Q; € F and Q; € T or vice
versa and

mark them. [Here F is the set of final states]

Step 3 — Repeat this step until we cannot mark anymore states —

wStep 4 — Com -' all the unmarked pair (Q;, Q;) and make them a single state in the reduced
: i L 3
i Lol

&?—\ “PRINCIPAL
sTaep 1lC Sri Raaya Raajan College of B~

Amaravathipudur, Karalkugt - o5 394
Sjvagangai Dist. Tamil Nagu

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
Department of Computer Science & Engineering
CS8501-TOC

MODEL?2 - ANSWER KEY
PART-A (10%2=20)

1. The principle of induction is a way of proving that P(n) is true for all integers n >
a. ... Then we may conclude that P(n) is true for all integers n > a. This principle is

very useful in problem solving, especially when we observe a pattern and want to
prove it.

RNl AP E s R T 3,

i
:
O

3
'Tlegular expression Regular language
Regular Expressions are an al gebraic way | A regular lan guage is a language that
to describe languages can be expressed with a regular
expression or a deterministic or non-
deterministic finite automata or state
machine
Regular Expressions describe exactly | A language is a set of strings which are
the regular languages. made up of characters from a specified
i alphabet, or set of symbols.

4. Context free grammar is a formal grammar which is used to generate all possible
strings in a given formal language.

Context free grammar G can be defined by four tuples as:

G=(V,T,P,S)

5. Parse tree is the hierarchical representation of terminals or non-terminals. These
symbols (terminals or non-terminals) represent the derivation of the grammar to yield
input strings. In parsing, the string springs using the beginning symbol.

ZRVULEG A
ES

--—-_...________‘__ -
[_NCIPAL

. E ch
/ . Cotiene of Engg. & e
/ " _-...-J_J.di" L-uu:. ___,wu; e ﬂ- 301
. sravathipudur, Karaikudi .63_ .
n_"‘uiiizl_‘a\‘gn L T l N

cjyagangai DiS

6. A context free grammar G such that some word has two parse trees is said
to be ambiguous.

An equivalent definition of ambiguity is that some word has more than
one left most

derivation or more than one rightmost derivation.

7. The pumping lemma for context-free languages, also known as the Bar-Hillel lemma

is a lemma that gives a property shared by all context-free languages and generalizes
the pumping lemma for regular languages.

2

8. amathematical model of a hypothetical computing machine which can use a
predefined set of rules to determine a result from a set of input variables.

9. It means TM can loop forever for the strings which are not a part of the
language. RE languages are also called as Turing recognizable languages.

10. Rice's theorem states that all non-trivial semantic properties of programs are
undecidable. A property is non-trivial if it is neither true for every partial computable
function, nor false for every partial computable function.

PART-B (5*13=65)

11. a) The equivalent DFA is defined by
({{}:p,9.5,5.Pq,pr.ps.qr,qs,rs,pqr,pgs, prs,qrs,pars}, £0,13,
delta), p, { S,PS,q8,I8,pgs.prs,qrs,pqrs}), where delta' is defined

by the chart below.
[0 1

I —— L Ll“ .
010 0 gty
plpg p '\/
alr o (2 Pt

s|s s P

pq| pqr pr ol "-":"T)\L

pripgs p Smaaja Ra College of Engo. & T~
ps| pgs ps arava ur, Karalkudi - 650 .7 5

E ur, |
Sivagangai Dist, Tamil Nadu

qrjrs r
gs|rs 1s
1s| s s
pqrlpgrs pr
prs| pgs ps
qrs| rs 18

pars{pqrs prs

b) For any DFA D, there is an NFA N such that L(N) =L(D), and
For any NFA N, there is a DFA D such that L(D)=L(N).

12. a) The set of regular languages, the set of NFA-recognizable languages, and the set
of DFA-recognizable languages are all the same.

Kleene's Theorem states the equivalence of the following three statements
* A language accepted by Finite Automata can also be accepted by a Transition graph.

e A language accepted by a Transition graph can also be accepted by Regular
Expression.

* A language accepted by Regular Expression can also be accepted by finite Automata.

b) i) A regular expression is a sequence of characters that specifies a search pattern in text.
Usually such patterns are used by strin g-searching algorithms for "find" or "find and replace”
operations on strings, or for input validation.

ii) Union
If L1 and If L2 are two regular languages, their union L1 U L2 will also be regular.
Example
Ll={an|n>0}and L2 = {bn|n> O}
L3= l:lU L2 = {an U bn | n > O} is also regular.

-

N
L1 and If L

anp.‘x‘{\&
€

L2={amUbnam|n>Oandm>O}
L3=L1NL2={ambn|n>0and m> 0} are also regular.

‘Concatenation
IfL1 and If L2 are two regular languages, their concatenation L1.L.2 will ﬂsmm_
Example '3 Raajan College of Engs

- «vathipudur, Karaikudi - 63¢ 3
Qjvagangai Dist. Tamil Nadu

L1={an|n>0} and L2 = {bn |n> O}
L3=L1L2= {am.bn|m> 0 and n> O} is also regular.

Kleene Closure

If L1 is a regular language, its Kleene closure T1* will also be regular.
Example

L1=(aUb)

Li*=(Uby*

Complement

If L(G) is a regular language, its complement L'(G) will also be regular, Complement of a
language can be found by subtracting strings which are in L(G) from all possible strings.
Example '
L(G)={an|n>3} L'(G) = {an | n <=3}

13. a) Chomsky Hierarchy represents the class of languages that are accepted by the
different machines.

Chomsky hierarchy

Hierarchy of grammars according to Chomsky is explained below as per the grammar types —
Type 0 — It is an Unrestricted grammars

Unrestricted grammar — an unrestricted grammar is a 4-tuple (T,N,P,S), which consisting
of —

T = set of terminals

N = set of nonterminal

P =as set of productions, of the form —
V->W

where v and w are strings consisting of nonterminal and terminals.

- recursively enumerable
- language

- Type 1 - context-sensitive context-sensitive linear-bounde (

"~ Razja Ragjan College of En

% -;%Lgvathipudur, Karaikudi- ¢_
magang_ai Dist. Tamil Nagy

Kutoninton

0

language automata

Type 2 Context-free - Context-free language - Push down automata
f - grammar " !
Type3 regular grammar regular language finite state

automaton

b) Acceptance by Empty Stack: On reading the input string from the initial configuration for
some PDA, the stack of PDA gets empty. Let P =(Q, 2, 1.8, q0, Z, F) be a PDA. The
language acceptable by empty stack can be defined as: N(PDA) = {w | (q0, w, Z) -* (p, &, 2),

q€EQ}

14. a) Multi-tape Turing Machines have multiple tapes where each tape is accessed
with a separate head. Each head can move independently of the other heads. Initially
the input is on tape 1 and others are blank. At first, the first tape is occupied by the
input and the other tapes are kept blank. Next, the machine reads consecutive symbols
under its heads and the TM prints a symbol on each tape and moves its heads.

each tape and moves its heads.

A Multi-tape Turing machine can be formally described as a 6-tuple (Q, X, B, 3,

qo. F) where —

Q is a finite set of states

Xis the tape alphabet

B is the blank symbol

d is a relation on states and symbols where

8: Q x X* — Q x (X x {Left_shift, Right shift, No_shift })*

where there is k number of tapes

~

io——— PRINCiPAL ~
a?;a Ra_a}an College of Eng~ -
! c;'-:r_uathipudur, Karaikudi - ¢
¥agangai Dist. Tamil Nag,

CLASS: ITIT -CSE

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TEST PERIOD ANALYSIS - INTERNAL MARKS STATEMENT

S.N NAME OF THE M2 IM3 IM4
0 REG.NO STUDENT
1 912519104001 AARTHLK 95 87 93
2 912519104002 | ABIKSHA.S 94 94 95
3 912519104003 ABINAYAK 95 86 94
4 912519104004 | ABINAYAN.C 96 83 95
5 912519104005 | ANIMUTHU.K 88 88 93
6 912519104006 | ARIVAZHAGAN.S 90 81 92
i 912519104008 | ARJUN KUMAR.C 92 80 93
8 912519104009 | AZARUDEEN.S 93 78 94
9 912519104010 | BENITTA. A 94 89 91
10 912519104011 DEENA JASMINE.A 95 86 92
11 912519104012 | DINESH.M 95 90 93
12 912519104013 JENCY.C 94 94 92
13 912519104014 | KAYALVIZHLK g5 93 94
14 912519104015 | MANIMEGALAILR 95 94 93
15 912519104016 | MUGESHEANNA.R 95 86 93
16 912519104017 | MUTHUKAVIYA.T 96 94 92
17 912519104018 | MUTHUKUMAR.A 92 87 92
912519104019 NITHIY ASRIBHUVANIK a3 94 91
18 AK
19 912519104020 | NIVETHITHA.K 95 91 93
20 912519104021 PAVITHRA.S 94 88 94
21 912519104022 | PIRIYADHARSHINI.A 96 78 92
22 912519104023 RAMILB 90 98 94
23 912519104025 SATHISH.S 94 38 96
24 912519104026 | SENTHOORADEVLP 95 91 93
25 912519104027 | SOWNTHARYA.N 96 86 93
26 912519104028 SRINIDHI.A 96 97 93
27 912519104029 | SWATHI.J 96 90 94
28 912519104030 | SWETHA.A 96 94 95
29 912519104031 VELLAIYAMMAL.K 95 88 93
IM All clear 75-80 81-90 91-100
IM2 29 - 03 26
IM3 29 05 13 11
IM4 29 3 = 29

(

———PRINCIPAL

1

Sri Raaja Raajan College of Engo. 8 Test
Amaravathipudur, Karmkugjx - B
<jvagangai Dist. Tamil Nadu

Storageinthefinitecontrol
Multipletracks
Checkingofsymbols
Shiftingover

Ll

5. Subroutines

15. a) A problem whose language is recursive is said to be decidable. Otherwise the
problem is said to be undecidable. Decidable problems have an algorithm that takes as
input an instance of the problem and determines whether the answer to that instance is
“yes” or “no”. (eg) of undecidable problems are (1)Halting problem of the TM.

b) If we are able to reduce Turing Machine to PCP then we will prove that PCP is
undecidable as well. Consider Turing machine M to simulate PCP's input string w can be
represented as . If there is match in input string w, then Turing machine M halts in
accepting state.

PART-C (1*15=15)

16. a) Step 1: Remove all the states that are unreachable from the initial state via any set
of the transition of DFA.

Step 2: Draw the transition table for all pair of states.

Step 3: Now split the transition table into two tables T1 and T2. T1 contains all final states,
and T2 contains non-final states.

Step 4: Find similar rows from T1 such that:

1.6(q,a8)=p
2.0(@ a)=p

That means, find the two states which have the same value of a and b and remove one of them.
Step 5: Repeat step 3 until we find no similar rows available in the transition table T1.
Step 6: Repeat step 3 and step 4 for table T2 also.

Step 7: Now combine the reduced T1 and T2 tables. The combined transition table is the
transition table of minimized DFA.

16. b) Step 1 — Consider M={Q, Z, §,q0,F) is NFA with &. We have to convert this NFA
i quivalent DFA denoted by. ...
2

ill obtain & transition on [pl,p2,p3,... pn] for each input. ...
te obtained [pl,p2,p3.... pn] € QO

STHPF - HOD — PRINCIPAL
Sl Razja Raajan Co‘!iege_o{ :
Amaravathipudur, Karaikua, ’
Sjyagangai Dist. Tamil Me

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE FILE
SUB CODE : CP5001
SUB NAME : PRINCIPLES OF PROGRAMMING LANGU AGE
DEGREE/BRANCH : M.E/CSE

STAFF INCHARGE S Mr.P.PONVASAN APCSE

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY £ %

AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Subject Code / Name - CP5001 PPL

Year / Dept. / Semester : I/ CSE /11 Sem

Academic Year - 2020-21

Staff in-Charge - Mr.P.Ponvasan AP/CSE
SNO. | INDEX REMARKS i
1. Time table o |
2 Name List |
3 Syllabus i
4. Lesson Plan |
D Course Plan
6. Handwritten Notes
75 University Question Papers

Internal 1 Question Paper

8. Internal 2 Question Paper

Model Question Paper with key

9. Internal & Model Marks Statement

10. Internal 1 Result Analysis

gl Internal 2 Result Analysis

12 Model Result Analysis |
13. Answer Sheets — Internal 1, internzl 2 & Model Exam i

= T
taff in-charge HOD Prineipal.
PRINCIPAL
Sri Raaja Raajan College of Engg. & Tect
Amaravathipudur, Karaikudi - 830 301
Sjvagangai Dist. Tamil Nadu

WILLINGNESS REPORT
From
P.Ponvasan ML.E,
Asst. Professor,
Department of Computer Science and Engineering,
SRRCET,
Karaikudi-630 301.
TO
The Principal,
SRRCET,
Karaikudi-630301
Sir/ Madam,
Sub: Willingness Report for Subject: - Reg. | hereby express my willingness to handle

the following subject in the following order of priority.

S.NO Name of the Subject Class Reason for Selection

1 CP5292 —Internetof | M.E - Interested =
Things

2 CP5001-Principles of | M.E-I Interested =
Programming

Language

Thanking You

'\./
ature of the Staff

Date: }* ©4 - 202]
Time:)0+*30AM

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING AND TECHNOLOGY g,
AMARAVATHIPUTHUR POST, KARAIKUDI - 630 301.
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Minutes of Subject Allocating Meeting

I P.Ponvasan hereby submit the minutes of department meeting held for the

subject allocating on 31/01/20223 at 10.00 am based on the annexure | &

annexure 1.

S.NO

NAME OF THE STAFF

NAME OF
THE
SUBJECT

CLASS

NO OF | STAFF
HRS SIGN

P.Ponvasan

CP5292 -
Internet of

Things

CP5001-
Principles of
Programming

Language

S

ATURE

CIRCULAR
DATE: 10.01.2021

Intimation of course allotment for faculties in the department of Computer Science and

Engineering during EVEN SEMESTER for M.E-COMPUTER SCIENCE AND

ENGINEERING.
S.NO NAME OF THE TITLE OF COURSE | COURSE CLASS
FACULTY CODE &
' YEAR
Internet of Things CP5292 I i
(PRINCIPAL) |
1 Principles of CP5001 [
Programming Language
Internet of Things CP5292 T =
P.PONVASAN
ASSISTANT Principles of CP5001 I
5 PROFESSOR Programming Language

Note: Faculties are asked to follow the syllabus issued by Anna University, Chennai.

Copy to

1. The HOD
2. All the faculties of Computer Science Dept.
3. File Copy

h SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
; AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

TIME TABLE
Name of the Staff : MR. P.Ponvasan Designation : AP/ CSE
Degree/Branch : M.E/CSE Year/Semester s 11
Academic Year : 2020-21 Subject code & Name s CP500] PPL;
1 2 3 e 5 6 3
DAY (9.30- | (10.20- | (10.50- | (11.20- | (1.05- | (12.10- | (3.15-
10.20) 11.10) | 11.40) | 12.25) | 12.10) K 01.00) | 4.00)
Mon PPL
Tue PPL
Wed PPL
Thu PPL |
Fri PPL

b\w/

Faculty in Charge

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630 301,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

STUDENTS NAME LIST

Degree/Branch : M.LE/CSE Year/Semester s V11
Academic Year :2020-21 Subject code & Name : CP5001 PPL
S.NO. REG.NO. NAME
1 912520405001 DEVI ABARNA SRI A
2 912520405002 GOWTHAMI R
4 912520405003 | PANDIMUTHU C

@\,«ﬁ/’

Faculty in Charge

CP5001 PRINCIPLES OF PROGRAMMING LANGUAGES LT P €
4 0- 0953

OBJECTIVES:

* Tounderstand and describe syntax and semantics of programming languages.
* Tounderstand Data, Data types, and Bindings.

* To learn the concepts of functional and logical programming.

* To explore the knowledge about concurrent Programming paradigms.

UNIT I ELEMENTS OF PROGRAMMING LANGUAGES 9
Reasons for studying, concepts of programming languages, Language Evaluation Criteria.
influences on Language design, Language categories. Programming Language
Implementation -~ Compilation, Hybrid Implementation, Pure Interpretation and Virtual
Machines. Describing Syntax and Semantics -Introduction - The General Problem of
Describing Syntax-Formal Methods of Describing Syntax - Attribute Grammars - Describing
the Meanings of Programs: Dynamic Semantics.

UNIT Il DATA TYPES-ABSTRACTION 9

Introduction - Primitive Data Types- Character String Types- User-Defined Ordinal Types-
Array types- Associative Arrays-Record Types- Tuple Types-List Types -Union Types -
Pointer and Reference Types -Type Checking- Strong Typing -Type Equivalence - Theory
and Data Types-Variables-The Concept of Binding -Scope - Scope and Lifetime -
Referencing Environments - Named Constants- The Concept of Abstraction- Parameterized
Abstract Data Types- Encapsulation Constructs- Naming Encapsulations

UNIT I FUNCTIONAL PROGRAMMING 9
Introduction- Mathematical Functions- Fundamentals of Functional Programming
Languages- The First Functional Programming Language: LISP- An Introduction to Scheme-
Common LISP- Haskell-F# - ML : Implicit Types- Data Types- Exception Handling in ML.
Functional Programming with Lists- Scheme, a Dialect of Lisp- The Structure of Lists- List
Manipulation- A Motivating Example: Differentiation- Simplification of Expressions- Storage
Allocation for Lists.

UNIT IV LOGIC PROGRAMMING 9
Relational Logic Programming- Syntax- Basics- Facts- Rules- Syntax- Operational
Semantics- Relational logic programs and SQL operations- Logic Programming- Syntax-
Operational semantics- Data Structures-Meta-tools: Backtracking optimization (cuts); Unify;
Meta-circular interpreters- The Origins of Prolog- Elements- of Prolog-Deficiencies of Prolog-
Applications of Logic Programming.

UNITV CONCURRENT PROGRAMMING 9
Parallelism in Hardware- Streams: Implicit Synchronization-Concurrency as Interleaving-
Liveness Properties- Safe Access to Shared Data- Concurrency in Ada- Synchronized
Access to Shared Variables- Synthesized Asiributes- Attribute Grammars- Natural
Semantics- Denotational Semantics -A Calculator in Scheme-Lexically Scoped Lambda
Expressions- An Interpreter-Recursive Functions.

TOTAL: 45 PERIODS
OUTCOMES:

n completion of this course, the students will be able to
?‘@MA;V o Describe syntax and semantics of programming languages
» o~

XRlain data, data types, and basic statements of programming languages
¥831gn and implement subprogram constructs, Apply object - oriented, concurrency,

REFERENCES:

1.

2
3
4

o

Ghezzi, Programming Languages, 3rd Edition, John Wiley, 2008

John C. Mitchell, Concepts in Programming Languages, Cambridge University
Press, 2004.

Louden, Programming Languages|, 3rd Edition, 2012.

Ravi Sethi, Programming Languages: Concepts and Constructs|, 2nd Edition,
Addison Wesley, 1996.

Robert .W. Sebesta, Concepts of Programming Lang uages||, 10th Edition, Pearson
Education, 2002.

Subject Code &
Title

Near / Semester

Degree/Branch

Unit test |
Unit Test 11
Model Exam

CSE

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Mr.P.Ponvasan

CP5001 PPL

1/

M I/CSE

.

AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

Lecture Plan 2020-21 (Even Semester)

Individual Time Table

Days
Period

1

Vi

Monday

PPL

Tuesday

PRPL

Wednesday

PPL

Thursday

PPL

Friday

PPL

Tentative dates for Unit Tests & Model Exam

10 S=21;

IS .21
l« &:2)

SRRCET/CSE/LP/SEM

Ty

SRRCET/M.E/CSE/NOTES/CP5501-PPL

UNIT-1
ELEMENTS OF PROGRAMMING LANGUAGES

Background

¢ Frankly, we didn‘t have the vaguest idea how the thing [FORTRAN language and
compiler] would work out in detail. .. We struck out simply to optimize the
object program, the running time, because most people at that time believed
you couldn’t do that kind of thing. They believed that machined-coded programs
would be so inefficient that it would be impractical for many applications.

* John Backus, unexpected successes are common - the browser is another
example of an unexpected success

1.1 Reasons for Studying Concepts of Programming Languages
* Increased ability to express ideas
* Improved background for choosing appropriate languages
¢ Increased ability to learn new languages
* Better understanding of significance of implementation
* Overall advancement of computing

Programming Domains
¢ Scientific applications
- Large number of floating point computations
- Fortran
* Business applications
- Produce reports, use decimal numbers and characters
- COBOL
* Artificial intelligence
- Symbols rather than numbers manipulated
- LISP
¢ Systems programming
- Need efficiency because of continuous use
- C
e Web Software
- Eclectic collection of languages: markup (e.g., XHTML), scripting (e.g., PHP),
general-purpose (e.g., Java)

1.2 Language Evaluation Criteria

¢ Readability : the ease with which programs can be read and understood
* Writability : the ease with which a language can be used to create programs
e Reliability :conformance to specifications (i.e, performs to its specifications)
e (Cost : the ultimate total cost

Readability

¢ Overall simplicity
- A manageable set of features and constructs
- Few feature multiplicity (means of doing the same oper3
- Minimal operator overloading
e Orthogonality
- A relatively small set of primitive constructs can be combined in a relatively

SRRCET/M.E/CSE/NOTES/CP5501-PPL

small number of ways
- Every possible combination is legal
e Control statements
- The presence of well-known control structures (e.g., while statement)
e Data types and structures
- The presence of adequate facilities for defining data structures
e Syntax considerations
- Identifier forms: flexible composition
- Special words and methods of forming compound statements
- Form and meaning: self-descriptive constructs, meaningful keywords
Writability
e Simplicity and Orthogonality
- Few constructs, a small number of primitives, a small set of rules for
combining them
e Support for abstraction
- The ability to define and use complex structures or operations in ways that
allow details to be ignored
e Expressivity
- A set of relatively convenient ways of specifying operations
- Example: the inclusion of for statement in many modern languages
Reliability
e Type checking
- Testing for type errors
e Exception handling
- Intercept run-time errors and take corrective measures
e Aliasing
- Presence of two or more distinct referencing methods for the same memory
location
e Readability and writability
- A language that does not support “natural” ways of expressing an algorithm
will necessarily use “unnatural” approaches, and hence reduced reliability
Cost
e Training programmers to use language
e Writing programs (closeness to particular applications)
e Compiling programs
e Executing programs
e Language implementation system: availability of free compilers
e Reliability: poor reliability leads to high costs
¢ Maintaining programs
Others
e Portability
- The ease with which programs can be moved from one implementation to
another
e Generality
- The applicability to a wide range of applications
o Well-definedness

SRRCET/M.E/CSE/NOTES/CP5501-PPL

1.3 Influences on Language Design
e Computer Architecture
- Languages are developed around the prevalent computer architecture,
known as the von Neumann architecture
e Programming Methodologies
- New software development methodologies (e.g., object-oriented software
development) led to new programming paradigms and by extension, new
programming languages

Computer Architecture
e Well-known computer architecture: Von Neumann
* Imperative languages, most dominant, because of von Neumann computers
- Data and programs stored in memory
- Memory is separate from CPU
- Instructions and data are piped from memory to CPU
- Basis for imperative languages
Variables model memory cells
Assignment statements model piping
Iteration is efficient

Memory (stores both instructions and data)

Ress of Instructions and data
operations
]
Arithmetic and | Control |
logic unit R unit +— Input and cutput devices

Central processing unit
Figure 1.1 The von Neumann Computer Architecture

Programming Methodologies

e 1950s and early 1960s: Simple applications; worry about machine efficiency

e Late 1960s: People efficiency became important; readability, better cont@e
structures
- structured programming
- top-down design and step-wise refinement

e Late 1970s: Process-oriented to data-oriented
- data abstraction

* Middle 1980s: Object-oriented programming :
- Data abstraction + inheritance + polymorphism : : 5

3 _ 7 L

SRRCET/M.E/CSE/NOTES/CP5501-PPL

1.4 Language Categories
s Imperative
- Central features are variables, assignment statements, and iteration
- Examples: C, Pascal
* Functional
- Main means of making computations is by applying functions to given
parameters
- Examples: LISP, Scheme
e Logic
- Rule-based (rules are specified in no particular order)
- Example: Prolog
e Object-oriented
- Data abstraction, inheritance, late binding
- Examples: Java, C++
e Markup
- New; not a programming per se, but used to specify the layout of information
in Web documents
- Examples: XHTML, XML

Language Design Trade-Offs
e Reliability vs. cost of execution
- Conflicting criteria
- Example: Java demands all references to array elements be checked for
proper indexing but that leads to increased execution costs
e Readability vs. writability
- Another conflicting criteria
- Example: APL provides many powerful operators (and a large number of new
symbols), allowing complex computations to be written in a compact program
but at the cost of poor readability
e Writability (flexibility) vs. reliability
- Another conflicting criteria
- Example: C++ pointers are powerful and very flexible but not reliably used

1.5 Programming Language Implementation Methods
e Compilation
- Programs are translated into machine language
e Pure Interpretation
- Programs are interpreted by another program known as an interpreter
« Hybrid Implementation Systems
- A compromise between compilers and pure interpreters

1.5.1 Compilation
« Transizte high-level program (source language) into machine code (machine
@nguzze)

Siow translation, fast execution

process has several phases:

S ysis: converts characters in the source program into lexical units
is: transforms lexical units into parse trees which represent the
cture of program

Snalysis: generate intermediate code

f=sion: machine code is generated

4

SRRCET/M.E/CSE/NOTES/CP5501-PPL

uu::mu.u(w d\-‘»:ﬂl' s daie
Figure Layered View of Computer: The operating
system and language implementation are layered el
over Machine interface of a computer '

ey

Figure The Compilation Process

1.5.2 Virtual Machines-Additional Compilation Terminologies
e Load module (executable image): the user and system code together
e Linking and loading: the process of collecting system program and linking them
to user program
Execution of Machine Code

e Fetch-execute-cycle (on a von Neumann architecture)
initialize the program counter
repeat forever
fetch the instruction pointed by the counter
increment the counter
decode the instruction
execute the instruction

end repeat
Von Neumann Bottleneck

e Connection speed between a computer's memory and its processor determines
the speed of a computer

e Program instructions often can be executed a lot faster than the above
connection speed; the connection speed thus results in a bottleneck

e Known as von Neumann bottleneck; it is the primary limiting factor in the speed
of computers

1.5.3 Pure Interpretation
e No translation
e Easier implementation of programs (run-time errors can easily and immediately
displayed)
e Slower execution (10 to 100 times slower than compiled programs)
e Often requires more space
e Becoming rare on high-level languages

SRRCET/M.E/CSE/NOTES/CP5501-PPL

e Significantly comeback with some latest web scripting languages (e.g.,
JavaScript)

1.5.4 Hybrid Implementation Systems
e A compromise between compilers and pure interpreters
¢ A high-level language program is translated to an intermediate language that
allows easy interpretation
Faster than pure interpretation
e Examples
- Perl programs are partially compiled to detect errors before interpretation
- Initial implementations of Java were hybrid; the intermediate form, byte
code, provides portability to any machine that has a byte code interpreter
and a runtime system (together, these are called Java Virtual Machine)

Source
Saurce (pProgram)
program |
Lexical
analyzer
5 i '_I'Z,xica._un.u

Input data Syntax

analyzer

Parse trees

hthfE'[H } : Interm (_::!_l.'ll'ﬂ

code generator
Intermaediate
code
e Input cata

Interpreter

Rw.]l[s Resuits

Figure Pure Interpreataion Figure Hybrid Implementation

Just-in-Time Implementation Systems

Initially translate programs to an intermediate language
Then compile intermediate language into machine code
Mazachine code version is kept for subsequent calls

IIT systems are widely used for Java programs

NET languages are implemented with a JIT system

Preprocessors

« Preprocessor macros (instructions) are commonly used to specify that code from
ww=r file is to be included

) \.“ =ssor processes a program immediately before the program is compiled
=4 embedded preprocessor macros

' example: C preprocessor

k Zinclude, #define, and similar macros

SRRCET/M.E/CSE/NOTES/CP5501-PPL

1.6 Describing Syntax and Semantics - Introduction

1.7 The General Problem of Describing Syntax

1.8 Formal Methods of Describing Syntax

Backus-Naur Form and Context-Free Grammars

Backus-Naur Form (BNF)

BNF Fundamentals

i. Syntax: the form or structure of the expressions, statements, and
programunits
ii. Semantics: the meaning of the expressions, statements, and program|
units
iii. Syntax and semantics provide a language's definition
1. Users of a language definition
2. Other language designers
3. Implementers
4. Programmers (the users of the language)

A sentence is a string of characters over some alphabet

A language is a set of sentences

A lexeme is the lowest level syntactic unit of a language (e.g., *, sum, begin)

A token is a category of lexemes (e.g., identifier)

Languages Recognizers

- A recognition device reads input strings of the language and decides whether
the input strings belong to the language

- Example: syntax analysis part of a compiler

Languages Generators

- A device that generates sentences of a language

- One can determine if the syntax of a particular sentence is correct by
comparing it to the structure of the generator

Backus-Naur Form and Context-Free Grammars

- Most widely known method for describing programming language syntax
Extended BNF

- Improves readability and writability of BNF

Grammars and Recognizers

Context-Free Grammars

Developed by Noam Chomsky in the mid-1950s

Language generators, meant to describe the syntax of natural languages
Define a class of languages called context-free languages

Backus-Naur Form (1959)

Invented by John Backus to describe ALGOL 58

BNF is equivalent to context-free grammars

BNF is a metalanguage used to describe another language
In BNF, abstractions are used to represent classes of synfa¢}
they act like syntactic variables (also called nonterminal s

Non-terminals: BNF abstractions
Terminals: lexemes and tokens
Grammar: a collection of rules

- Examples of BNF rules:

Jadlidilt

PULE ML

._u” . “ Jradt Ly L

SRRCET /M.E/CSE/NOTES/CPS501-PPL

<gemr s> — idemner | idewsier. <dens s>
< somt> — i <ogec o> them <s===>
BNF Rules
e A rule has a left-hand side (LHS) and a right-hand side [(RHS). and consists of
terminal and nonterminal symbols
A grammar is a finite nonempty set of rules
An abstraction (or nonterminal symbol) can have more than one RHS
<stmt> — <single_stmt>
| begin <stmt_list> end
Describing Lists
e Syntactic lists are described using recursion
<ident_list> — ident
| ident, <ident_list>
e A derivation is a repeated application of rules, starting with the start symbol
and ending with a sentence (all terminal symbols)

An Example Grammar

<program> — <stmts>

<stmts> — <stmt> | <stmt> ; <stmts>

<stmt> — <var> = <expr=
<var>—afbjfc/d

<expr> — <term> + <term> [<term> - <term=>
<term> — <var> [const

Parse Tree
A hierarchical representation of a derivation
An example derivation Figure 2.1 Parse Tree
<program>=<stmts>
= <stmt> <program:>
© <var>=<expr> |
= a=<expr> ¢sh;1ts>
= a=<term>+<term> S
@ a=<var>+<term=> ol bty
= a=b+<term> <vars> = <expr>
I - =T
< a=b+const a <term> + <term>
| |
<var> const
I
b
Derivation

e Every string of symbols in the derivation is a sentential form

» A sentence is a sentential form that has only terminal symbols

e A leftmostderivation is one in which the leftmost nonterminal in each sentential
form is the one that is expanded

e A derivation may be neither leftmost nor rightmost

Ambiguity in Grammars
e A grammar is ambiguous iff it generates a sentential form that has two or more

distinct parse trees

| An Unambiguous Expression Grammar
If we use the parse tree to indicate precedence levels of the operators, we cannot

have ambiguity

<expr> — <expr> - <term>[<term>

<term> — <term> / constfconst

SRRCET/M.E/CSE/NOTES/CP5501-PPL

—

1.9 Attribute Grammars

* Context-free grammars (CFGs) cannot describe all of the syntax of programming
languages

¢ Additions to CFGs to carry some semantic info along parse trees

* Primary value of attribute grammars (AGs):
- Static semantics specification
- Compiler design (static semantics checking)

Definition
¢ An attribute grammar is a context-free grammar G = (S, N, T, P) with the
following additions:
- For each grammar symbol x there is a set A(x) of attribute values

- Each rule has a set of functions that define certain attributes of the
nonterminals in the rule

- Each rule has a (possibly empty) set of predicates to check for attribute
consistency

- LetX0 X1 ... Xn be a rule

- Functions of the form S(X0) = f(A(X1), ..., A(Xn)) define synthesized attributes

- Functions of the form I(Xj) = f(A(X0), ..., A(Xn)), for i <= j <= n, define
inherited attributes

- Initially, there are intrinsic attributes on the leaves

Example
e Syntax
<assign> — <var> = <expr>
<expr> — <var> + <var> [<var>
<var>—->A[BJC
e actual_type: synthesized for <var> and <expr>
¢ expected_type: inherited for <expr>

* Syntax rule i<expr> — <var>{1] + <var>[2]
Semantic rules :<expr>actual_type — <var>[1].actual_type
Predicate i<var>[1].actual_type == <var>[2].actual_type
<expr>.expected_type == <expr>.actual_type
e Syntax rule i<var> - id
Semantic rule :<var>.actual_type < lookup (<var>.string)

e How are attribute values computed?
- If all attributes were inherited, the tree could be decorated in top-down order.
- If all attributes were synthesized, the tree could be decorated in bottom-up
order.
- In many cases, both kinds of attributes are used, and it is some combination
of top-down and bottom-up that must be used.

<expr>.expected_type <« inherited from parent ;
<var>[1].actual_type <« lookup (A) _
<var>[2].actual_type < lookup (B) 7S &

<var>[1].actual_type =? <var>{2].actual_type
<expr>.actual_type < <var>[1].actual_type
<expr>.actual_type =? <expr>.expected_type

1.10 Describing the Meanings of Programs: Dynamic
e There is no single widely acceptable notation or formalism
semantics
¢ Operational Semantics

SRRCET/M.E/ m/‘%—n&

- Describe the meaning of a program by executing its statements oo :I
machine, either simulated or actual. The change in the state of the mach oe
(memory, registers, etc.) defines the meaning of the statement

e To use operational semantics for a high-level language, a virtual machine is
needed

* A hardware pure interpreter would be too expensive

* A software pure interpreter also has problems:

- The detailed characteristics of the particular computer would make actions
difficult to understand

- Such a semantic definition would be machine- dependent

operational Semantics
e A better alternative: A complete computer simulation
e The process:
- Build a translator (translates source code to the machine code of an idealized
computer)
- Build a simulator for the idealized computer
e Evaluation of operational semantics:
- Good if used informally (language manuals, etc.)
- Extremely complex if used formally (e.g., VDL), it was used for describing
semantics of PL/I.
e Axiomatic Semantics
- Based on formal logic (predicate calculus)
- Original purpose: formal program verification
- Approach: Define axioms or inference rules for each statement type in the
language (to allow transformations of expressions to other expressions)
- The expressions are called assertions

Axiomatic Semantics

e An assertion before a statement (a precondition) states the relationships and
constraints among variables that are true at that point in execution
An assertion following a statement is a postcondition
A weakest precondition is the least restrictive precondition that will guarantee
the postcondition
Pre-post form: {P} statement {Q}
Anexample:a=b+1 {a>1}
One possible precondition: {b > 10}
Weakest precondition: {b > 0}
Program proof process: The postcondition for the whole program is the desired
result. Work back through the program to the first statement. If the
precondition on the first statement is the same as the program spec, the
program is correct.
= An axiom for assignment statements

(x=E):

{Qx->E} x = E{Q}

= An inference rule for sequences

- For a sequence S1;S2:
o 1} 51 {P2}

N F2] 52 {P3}

™ mference rule for logical pretest loops
or the loop construct:
¥1 while Bdo Send {Q}

10

SRRCET/M.E/CSE/NOTES/CP5501-PPL

Characteristics of the loop invariant
I must meet the following conditions:

|

I

e The loop invariant I is a weakened version of the loop postcondition, and it is
also a precondition.

* | must be weak enough to be satisfied prior to the beginning of the loop, but
when combined with the loop exit condition, it must be strong enough to force
the truth of the poestcondition.

Evaluation of Axiomatic Semantics:

Denotational Semantics

¢ Decimal Numbers

P => [(the loop invariant must be true initially)

{I} B {I} (evaluation of the Boolean must not change the validity of I)
{l and B} S {I} (I is not changed by executing the body of the loop)
(I'and (not B)) => Q (if I is true and B is false, Q is implied)

The loop terminates (this can be difficult to prove)

Developing axioms or inference rules for all of the statements in a language
is difficult

It is a good tool for correctness proofs, and an excellent framework for
reasoning about programs, but it is not as useful for language users and
compiler writers

Its usefulness in describing the meaning of a programming language is
limited for language users or compiler writers

Based on recursive function theory
The most abstract semantics description method
Originally developed by Scott and Strachey (1970)
The process of building a denotational spec for a language (not necessarily
easy):
Define a mathematical object for each language entity
Define a function that maps instances of the language entities onto instances
of the corresponding mathematical objects
The meaning of language constructs are defined by only the values of the
program's variables
The difference between denotational and operational semantics: In
operational semantics, the state changes are defined by coded algorithms; in
denotational semantics, they are defined by rigorous mathematical functions
The state of a program is the values of all its current variables

s = {<il, vl>, <i2, v2>, .., <in, vn>}
Let VARMAP be a function that, when given a variable name and a state,

returns the current value of the variable
VARMAP(ij, s) = vj

The following denotational semantics description maps decimal numbers as

strings of symbols into numeric values
<decnum>—-0]1|2]|3]|4|5]6|7][8]9 :
¢|<dec_nurn>(0|1]2|3|4|S[6]7]8|9)’"
Mdec('0") = 0, Mdec (‘1) = 1, .., Mdec ('9") = 9 i/
Mdec (<dec_num> '0") = 10 * Mdec (<dec_num>)
Mdec (<dec_num> '1") = 10 * Mdec (<dec_num>) + 1

Mdec (<dec_num> '9") = 10 * Mdec (<dec_num>) + 9

5

T e

SRRCET/M.E/CSE/NOTES/CP5501- 8980

UNIT-2
DATA TYPES-ABSTRACTION

Introduction
e A data type defines a collection of data objects and a set of predefined
operations on those objects
e A descriptor is the collection of the attributes of a variable
An object represents an instance of a user-defined (abstract data) type
e One design issue for all data types: What operations are defined and how are
they specified?

2.1 Primitive Data Types
e Almost all programming languages provide a set of primitive data types
e Primitive data types: Those not defined in terms of other data types
« Some primitive data types are merely reflections of the hardware
e Others require only a little non-hardware support for their implementation
Integer
» Almost always an exact reflection of the hardware so the mapping is trivial
e There may be as many as eight different integer types in a language
e Java's signed integer sizes: byte, short, int, long
Floating Point
e Model real numbers, but only as approximations
e Languages for scientific use support at least two floating-point types (e.g., float
and double; sometimes more
¢ Usually exactly like the hardware, but not always
o IEEE Floating-Point
Standard 754
Complex
e Some languages support a complex type, e.g., Fortran and Python
¢ Each value consists of two floats, the real part and the imaginary part
« Literal form (in Python):
(7 + 3j), where 7 is the real part and 3 is the imaginary part
Decimal
« Forbusiness applications (money)
- Essential to COBOL
- C# offers a decimal data type
Store a fixed number of decimal digits, in coded form (BCD)
Advantage: accuracy
» Disadvantages: limited range, wastes memory
Boolean
« Simplestofall
« Range of values: two elements, one for “true” and one for “false”
« Could be implemented as bits, but often as bytes
- Advantage: readability
Character
Stored 2s numeric coding
commonly used coding: ASCII
2% ernative, 16-bit coding: Unicode

12

e —

SRRCET/M.E/CSE/NOTES/CP5501-PPL

- Includes characters from most natural languages
- Originally used in Java
- C# and JavaScript also support Unicode

2.2 Character String Types
e Values are sequences of characters
* Design issues:
- Is it a primitive type or just a special kind of array?
- Should the length of strings be static or dynamic?
Operations
e Typical operations:
- Assignment and copying
- Comparison (=, >, etc.)
Catenation
Substring reference
- Pattern matching
Character String Type in Certain Languages
e Cand C++
- Not primitive
- Use char arrays and a library of functions that provide operations
¢ SNOBOL4 (a string manipulation language)
e Primitive
* Many operations, including elaborate pattern matching
® Fortran and Python
- Primitive type with assignment and several operations
e Java
- Primitive via the String class
* Perl, JavaScript, Ruby, and PHP
- Provide built-in pattern matching, using regular expressions
Character String Length Options
* Static: COBOL, Java's String class
e Limited Dynamic Length: C and C++
- In these languages, a special character is used to indicate the end of a
string’s characters, rather than maintaining the length
* Dynamic (no maximum): SNOBOL4, Perl, JavaScript
* Adasupports all three string length options
Evaluation
e Aid to writability
* As a primitive type with static length, they are inexpensive to provide—why not

have them?
* Dynamic length is nice, but is it worth the expense?
Implementation

» Staticlength: compile-time descriptor

* Limited dynamic length: may need a run-time descriptor for leyfét
and C++)

* Dynamic length: need run-time descriptor; allocation/de-a
biggest implementation problem

Static stwrirng

Lirmizect cliyrrarviic striry

Fetmhrraar le g

Length
Casrresat borriogtis
Acdciress) a T.—-l_'l:-:\'\
Figure 3.1 Compile-Time Descriptor | Figure 2 2 Run-Time Descriptors

13

SRRCET/M.E/CSE/NOTES/CP5501-PPL

2.3 User-Defined Ordinal Types - CO2
* An ordinal type is one in which the range of possible values can be easily
associated with the set of positive integers
¢ Examples of primitive ordinal types in Java
- integer
- char
- boolean

Enumeration Types
e All possible values, which are named constants, are provided in the definition

o C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

e Design issues
- Is an enumeration constant allowed to appear in more than one type
definition, and if so, how is the type of an occurrence of that constant
checked?
- Are enumeration values coerced to integer?
- Any other type coerced to an enumeration type?

Evaluation of Enumerated Type
¢ Aid to readability, e.g., no need to code a color as a number
e Aid to reliability, e.g., compiler can check:
- Operations (don‘t allow colors to be added)
- No enumeration variable can be assigned a value outside its defined range
- Ada, C#, and Java 5.0 provide better support for enumeration than C++
because enumeration type variables in these languages are not coerced into
integer types

Subrange Types
e Anordered contiguous subsequence of an ordinal type
- Example: 12..18 is a subrange of integer type

e Ada's design
type Days is (mon, tue, wed, thu, fri, sat, sun);
subtype Weekdays is Days range mon..fri;
subtype Index is Integer range 1..100;

Dayl: Days;
Day2: Weekday;
Day2 := Day1;

Subrange Evaluation

e Aid to readability
- Make it clear to the readers that variables of subrange can store only certain
range of values
e Reliability
- Assigning a value to a subrange variable that is outside the specified range is
detected as an error

14

SRRCET/ M.E/CSE/NOTES/CP5501-PPL

2.4 Array Types
®* An array is an aggregate of homogeneous data elements in which an individual
element is identified by its position in the aggregate, relative to the first element.
Array Design Issues
* What types are legal for su bscripts?
Are subscripting expressions in element references range checked?
When are subscript ranges bound?
When does allocation take place?
What is the maximum number of subscripts?
Can array objects be initialized?
Are any kind of slices supported?
Array Indexing
* Indexing (or subscripting) is a mapping from indices to elements
array_name (index_value_list)—>an element

* Index Syntax
- FORTRAN, PL/I, Ada use parentheses

* Ada explicitly uses parentheses to show uniformity between array references
and function calls because both are mappings
- Most other languages use brackets

Arrays Index (Su bscript) Types
FORTRAN, C: integer only

* Ada: integer or enumeration (includes Boolean and char)

* Java: integer types only

¢ Index range checking
- G, C++, Perl, and Fortran do not specify range checking
- Java, ML, C# specify range checking
- In Ada, the default is to require range checking, but it can be turned off

Subscript Binding and Array Categories

* Static: subscript ranges are statically bound and storage allocation is static
(before run-time)

- Advantage: efficiency (no dynamic allocation)

* Fixed stack-dynamic: subscript ranges are statically bound, but the allocation is
done at declaration time
- Advantage: space efficiency

* Stack-dynamic: subscript ranges are dynamically bound and the storage
allocation is dynamic (done at run-time)

- Advantage: flexibility (the size of an array need not be known until the array
is to be used)

* Fixed heap-dynamic: similar to fixed stack-dynamic: storage binding is dynamic
but fixed after allocation (i.e., binding is done when requested and storage is
allocated from heap, not stack)

* Heap-dynamic: binding of subscript ranges and storage allocation is dynamic

and can change any number of times

- Advantage: flexibility (arrays can grow or shrink during program exe
C and C++ arrays that include static modifier are static '
Cand C++ arrays without static modifier are fixed stack-dynamic o
C and C++ provide fixed heap-dynamic arrays z| o pRY
C# includes a second array class ArrayList that provides fi\g;
Perl, JavaScript, Python, and Ruby support heap-dynamic Nu#

15

{ECH, »*

SRRCET/M.E/CSE/NOTES/CP5501-PPL

Array Initialization
* Some language allow initialization at the time of storage allocation
- C,C++,Java, C# example
intlist[] = {4 5, 7, 83)
Character strings in C and C++
char name [] = “freddie”;
Arrays of strings in C and C++
char *names [] = {"Bob”, “Jake”, “Joe"};
Java initialization of String objects
String[] names = {“Bob”, “Jake”, “Joe"};
Heterogeneous Arrays
* A heterogeneous array is one in which the elements need not be of the same
type
* Supported by Perl, Python, JavaScript, and Ruby
Arrays Operations
* APL provides the most powerful array processing operations for vectors and
matrixes as well as unary operators (for example, to reverse column elements)
* Ada allows array assignment but also catenation
* Python’s array assignments, but they are only reference changes. Python also
supports array catenation and element membership operations
e Ruby also provides array catenation
* Fortran provides elemental operations because they are between pairs of array
elements
- For example, + operator between two arrays results in an array of the sums
of the element pairs of the two arrays
Rectangular and Jagged Arrays
* A rectangular array is a multi-dimensioned array in which all of the rows have
the same number of elements and all columns have the same number of
elements
* A jagged matrix has rows with varying number of elements
- Possible when multi-dimensioned arrays actually appear as arrays of arrays
¢ C, C++,and Java support jagged arrays
Fortran, Ada, and C# support rectangular arrays (C# also supports jagged
arrays)
Slices
* Aslice is some substructure of an array; nothing more than a referencing
mechanism
» Slices are only useful in languages that have array operations

I

|

Slice Examples Figure 3.3 Slices Examples in Fortran 95
- Fortran 95 ,,/ _ aas
». Integer, Dimension (10) :: Vector /ﬁ | 7
W\ Integer, Dimension (3, 3) :: Mat s 5

» Access function maps subscript expressions to an address in the array

* Access function for single-dimensioned arrays:
address(list[k]) = address (list[lower_bound])+((k-lower_bound) * element_size)

16

SRRCET /M.E/CSE/NOTES/CP5501-PPL

Accessing Multi-dimensioned Arrays

¢ Two common ways:
- Row major order (by rows) - used in mostlanguages
- Column major order (by columns) - used inFortran

2.5 Associative Arrays
* An associative array is an unordered collection of data elements that are
indexed by an equal number of values called keys
- User-defined keys must be stored
* Design issues:
- What is the form of references to elements?
- Is the size static or dynamic?
Associative Arrays in Perl
» Names begin with %; literals are delimited by parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, —Wed|| => 65, ...);
¢ Subscripting is done using braces and keys
Shi_temps{"Wed"} = 83;
¢ Elements can be removed with delete
delete $hi_temps{"Tue"};

2.6 Record Types - Tuple Types & List Types
* Arecord is a possibly heterogeneous aggregate of data elements in which the
individual elements are identified by names
e Design issues:
- What is the syntactic form of references to the field?
- Are elliptical references allowed?
Definition of Records in COBOL
e COBOL uses level numbers to show nested records; others use recursive
definition
01 EMP-REC.
02 EMP-NAME.
05 FIRST PIC X(20).
05 MID PIC X(10).
05 LAST PIC X(20).
02 HOURLY-RATE PIC 99V99.
Definition of Records in Ada
* Record structures are indicated in an orthogonal way
type Emp_Rec_Type is record
First: String (1..20);
Mid: String (1..10);
Last: String (1..20);
Hourly_Rate: Float;
end record;
Emp_Rec: Emp_Rec_Type;
References to Records
¢ Record field references

- COBOL

- Others (dot notation)

e Fully qualified references must include all record nam

e Elliptical references allow leaving out record names as long as the reference is
unambiguous, for example in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are elliptical

17

———

SRRCET/M.E/CSE/NOTES/CP5501-PPL

references to the employee’s first name
Operations on Records
¢ Assignment is very common if the types are identical
* Ada allows record comparison
* Ada records can be initialized with aggregate literals
COBOL provides MOVE CORRESPONDING
- Copies a field of the source record to the corresponding field in the target
record
Evaluation and Comparison to Arrays
® Records are used when collection of data values is heterogeneous
* Access to array elements is much slower than access to record fields, because
subscripts are dynamic (fieldnames are static)
* Dynamic subscripts could be used with record field access, but it would disallow
type checking and it would be much slower

2.7 Unions Types
A union is a type whose variables are allowed to store different type values
atdifferent times during execution
* Design issues
- Should type checking be required?
- Should unions be embedded in records?

Discriminated vs. Free Unions
* Fortran, C, and C++ provide union constructs in which there is no language
support for type checking; the union in these languages is called free union
* Type checking of unions require that each union include a type indicator called
a discriminant
- Supported by Ada
Ada Union Types type Shape is (Circle, Triangle, Rectangle);type Colors
is (Red, Green, Blue);
type Figure (Form: Shape) is recordFilled: Boolean;
Color: Colors;case Form is
when Circle => Diameter: Float:
when Triangle =>Leftside, Rightside: Integer;Angle: Float;
when Rectangle => Sidel, Side2: Integer;end case;
end record;

Evaluation of Unions

not allow type checking

- Java and C# do not support unions
Reflective of growing concerns for safety in programming language
escriminated unions are safe

! _ ter and Reference Types

? * A pointer type variable has a range of values that consists of memory addresses
and a special value, nil

: * Provide the power of indirect addressing

e * Providea way to manage dynamic memory

= * A pointer can be used to access a location in the area where storage is

dynamically created (usually called a heap)
Design Issues of Pointers

18

e e e e
SRRCET/M.E/CSE/NOTES/CP5501-PPL

e What are the scope of and lifetime of a pointer variable?
« What is the lifetime of a heap-dynamic variable?
Are pointers restricted as to the type of value to which they can point?
e Are pointers used for dynamic storage management, indirect addressing, or
both?
¢ Should the language support pointer types, reference types, or both?
Pointer Operations
¢ Two fundamental operations: assignment and dereferencing
e Assignment is used to set a pointer variable's value to some useful address
e Dereferencing yields the value stored at the location represented by the pointer's
value
- Dereferencing can be explicit or implicit
- C++ uses an explicit operation via *
Jj="ptr
sets j to the value located at ptr
Pointer Assignment Illustration
708D

~ | An anonymous

: :
/___-v: ,(@ | dynamic variable

ptr l 7080 ’

3} X |
R EESERAN |

Figure The assignment operation j = *ptr
|| Problems with Pointers
* Dangling pointers (dangerous)
- A pointer points to a heap-dynamic variable that has been deallocated
e Lostheap-dynamic variable
- An allocated heap-dynamic variable that is no longer accessible to the user
program (often called garbage)
¢ Pointer plis setto point to a newly created heap-dynamic variable
¢ Pointer pl is later set to point to another newly created heap-dynamic variable
e The process of losing heap-dynamic variables is called memory leakage
Pointers in Ada
e Some dangling pointers are disallowed because dynamic objects can be
automatically deallocated at the end of pointer's type scope
e The lost heap-dynamic variable problem is not eliminated by Ada (possible with
UNCHECKED_DEALLOCATION) :

Pointers in C and C++
Extremely flexible but must be used with care

L
e Pointers can point at any variable regardless of when or whéb cated
e Used for dynamic storage management and addressing _;,g’
¢ Pointer arithmetic is possible 1=
9 X (@
e Explicit dereferencing and address-of operators \oﬂ
¢ Domain type need not be fixed (void *) N\

void * can point to any type and can be type
checked (cannot be de-referenced)

Pointer Arithmetic in C and C++
float stuff[100];
float *p;
19

SRRCET/M.E/CSE/NOTES/(PS501-PPL

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and pli]
Reference Types
e« C++ includes a special kind of pointer type called a reference type that is uses
primarily for formal parameters
- Advantages of both pass-by-reference and pass-by-value
e Java extends C++'s reference variables and allows them to replace pointers
entirely
_ References are references to objects, rather than being addresses
e C# includes both the references of Java and the pointers of C++
Evaluation of Pointers
e Dangling pointers and dangling objects are problems as is heap management
e Pointers are like goto's--they widen the range of cells that can be accessed by a
variable
« Pointers or references are necessary for dynamic data structures--so we can't
design a language without them
Representations of Pointers
e Large computers use single values
¢ Intel microprocessors use segment and offset
Dangling Pointer Problem
e Tombstone: extra heap cell that is a pointer to the heap-dynamic variable
_ The actual pointer variable points only at tombstones
- When heap-dynamic variable de-allocated, tombstone remains but set to nil
- Costly in time and space

e Locks-and-keys: Pointer values are represented as (key, address) pairs
- Heap-dynamic variables are represented as variable plus cell for integer lock
value
- When heap-dynamic variable allocated, lock value is created and placed in
lock cell and key cell of pointer
Heap Management
e A very complex run-time process
e Single-size cells vs. variable-size cells
« Two approaches to reclaim garbage
_ Reference counters (eager approach): reclamation is gradual
- Mark-sweep (lazy approach): reclamation occurs when the list of variable
space becomes empty
Reference Counter
¢ Reference counters: maintain a counter in every cell that store the number of
inters currently pointing at the cell

p = stuff;
k

‘?Sr‘ —~J<oWisadvantages: space required, execution time required, complications for
< 2 \"¢8lls connected circularly
5 éf-(/ A vantage: it is intrinsically incremental, so significant delays in the

G2 9 plication execution are avoided
= d.“'J\Marliz-Sf:) ep
' « “The run-time system allocates storage cells as requested and disconnects
pointers from cells as necessary; mark-sweep then begins
- Every heap cell has an extra bit used by collection algorithm
- All cells initially set to garbage
- All pointers traced into heap, and reachable cells marked as not garbage
All garbage cells returned to list of available cells

20

SRRCET/M.E/CSE/NOTES/CP5501-PPL

- Disadvantages: in its original form, it was done too infrequently. When done,
it caused significant delays in application execution. Contemporary
marksweep algorithms avoid this by doing it more often—called incremental

marksweep
W !
e
;_({ kS .y
e \‘- / / ™

Diashad lnes shway 1he order of node_marking

Figure 3.10 Marking Algorithm

Variable-Size Cells
e All the difficulties of single-size cells plus more
e Required by most programming languages
e Ifmark-sweep is used, additional problems occur
- The initial setting of the indicators of all cells in the heap is difficult
- The marking process in nontrivial
- Maintaining the list of available space is another source of overhead

2.8 Type Checking

e Generalize the concept of operands and operators to include subprograms and
assignments

e Type checking is the actmty of ensuring that the operands of an operator are of
compatible types

e A compatible type is one that is either legal for the operator, or is allowed under
language rules to be implicitly converted, by compiler- generated code, to a legal
type. This automatic conversion is called as coercion.

e A type error is the application of an operator to an operand of an inappropriate
type

e Ifall type bindings are static, nearly all type checking can be static

e Iftype bindings are dynamic, type checking must be dynamic

e Def: A programming language is strongly typed if type errors are always detected

2.9 Strong Typing -

» Advantage of strong typing: allows the detection of the misuses: ef‘*ya_l' _bles that
result in type errors A

e Language examples:
- [UFORTRAN 77 is not: parameters, EQUIVALENCE
- Pascal is not: variant records
- C and C++ are not: parameter type checking can be av

type checked
- Ada is, almost (UNCHECKED CONVERSION is loophole)
(Java is similar)

e Coercion rules strongly affect strong typing--they can weaken it considerably
(C++ versus Ada)

e Although Java has just half the assignment coercions of C++, its strong typing
is still far less effective than that of Ada

21

SRRCET/M.E/CSE/NOTES/CP5501-PPL

&.10 Type Equivalence

2.11 Theory and Data Types -Names

%
g

Our concern is primarily for structured types
Def: Name type compatibility means the two variables have compatible types if
they are in either the same declaration or in declarations that use the same type
name
Easy to implement but highly restrictive:
- Subranges of integer types are not compatible with integer types
- Formal parameters must be the same type as their corresponding actual
parameters (Pascal)
Structure type compatibility means that two variables have compatible types if
their types have identical structures
More flexible, but harder to implement
Consider the problem of two structured types:
Are two record types compatible if they are structurally the same but use
different field names?
[Are two array types compatible if they are the same except that the subscripts
are different?
(e.g., [1..10] and [0..9])
Are two enumeration types compatible if their components are spelled
differently?
With structural type compatibility, you cannot differentiate between types of the
same structure (e.g., different units of speed, both float)
Language examples:
- [OPascal: usually structure, but in some cases name is used (formal
parameters)
- C: structure, except for records
- Ada: restricted form of name
o Derived types allow types with the same structure to be different
o Anonymous types are all unique, even in:
A, B : array (1..10) of INTEGER:

Design issues for names:

- Maximum length?

Are connector characters allowed?

Are names case sensitive?

- Are special words reserved words or keywords?

Length

f too short, they cannot be connotative

anguage examples:

OFORTRAN [: maximum 6

COBOL: maximum 30

FORTRAN 90 and ANSI C: maximum 31

6 Ada and Java: no limit, and all are significant

o C++:no limit, but implementors often impose one

Connectors

- Pascal, Modula-2, and FORTRAN 77 don't allow

- Others do

Case sensitivity

- Disadvantage: readability (names that look alike are different)
o worse in C++ and Java because predefined names are mixed case (e.g.,

22

SRRCET /MLE /CSE/NOTES (PS501-PPL

IndexOutOfBoundsException]
- G, C++, and Java names are case sensitive
- The names in other languages are not
* Special words
- An aid to readability; used to delimit or Separate statement clauses
- Def: A keyword is a word that is special only in certain contexts
o i.e.in Fortran:
- Real VarName (Real is data type followed with a name, therefore Real is
a keyword)
- Real = 3.4 (Real is a variable)
- Disadvantage: poor readability
- Def: A reserved word is a special word that cannot be used as a user-defined
name

2.12 Variables
* Avariable is an abstraction of a memory cell
* Variables can be characterized as a sextuple of attributes:
(name, address, value, type, lifetime, and scope)
Name - not all variables have them (anonymous)
Address - the memory address with which it is associated (also called I-value)
- A variable may have different addresses at different times during execution
- Avariable may have different addresses at different places in a program
- If two variable names can be used to access the same memory location, they
are called aliases
- Aliases are harmful to readability (program readers must remember all of
them)
* How aliases can be created:
- Pointers, reference variables, C and C++ unions
- Some of the original justifications for aliases are no longer valid; e.g.,
memory reuse in FORTRAN
- Replace them with dynamic allocation
* Type - determines the range of values of variables and the set of operations that
are defined for values of that type; in the case of floating point, type also
determines the Precision
* Value - the contents of the location with which the variable is associated
* Abstract memory cell - the physical cell or collection of cells associated with a
variable

2.13 The Concept of Binding- Scope,Scope and Lifetime
* The I-value of a variable is its address
e The r-value of a variable is its value C
* Def: A binding is an association, such as between an attribfite an

(5

o,

entity, or

between an operation and a symbol /’(’;3;:3“ agh,
* Def: Binding time is the time at which a binding takes }?{g‘
¢ Possible binding times: s

- Language design time--e.g., bind operator symbols to @perati

- Language implementation time--e.g., bind ﬂoatin%7 &S Wpe to a
representation

- Compile time--e.g., bind a variable to a typein Cor Java

- Load time--e.g., bind a FORTRAN 77 variable to a memory cell (or a C static

23

SRRCET/M.E/CSE/NOTES/CP5501-PPL

variable)
- Runtime--e.g., bind a nonstatic local variable to a memory cell
e Def: A binding is static if it first occurs before run time and remains unchanged
throughout program execution.
e Def: A binding is dynamic if it first occurs during execution or can change
during execution of the program.
e Type Bindings
- How is a type specified?
- When does the binding take place?
- |If static, the type may be specified by either an explicit or an implicit
declaration
e Def: An explicit declaration is a program statement used for declaring the types
of variables
e Def: An implicit declaration is a default mechanism for specifying types of
variables (the first appearance of the variable in the program)
e FORTRAN, PL/I, BASIC, and Perl provide implicit declarations
- Advantage: writability
- Disadvantage: reliability (less trouble with Perl)
e Dynamic Type Binding (JavaScript and PHP)
Specified through an assignment statement e.g., JavaScript
list = [2, 4.33, 6, 8];
list =17.3;
- Advantage: flexibility (generic program units)
- Disadvantages:
o High cost (dynamic type checking and interpretation)
o Type error detection by the compiler is difficult
*» Type Inferencing (ML, Miranda, and Haskell)
- Rather than by assignment statement, types are determined from the context
of the reference
e Storage Bindings & Lifetime
- Allocation - getting a cell from some pool of available cells
- Deallocation - putting a cell back into the pool

e ef: The lifetime of a variable is the time during which it is bound to a
particular memory cell
e Categories of variables by lifetimes
- Static--bound to memory cells before execution begins and remains bound to
the same memory cell throughout execution.
e.g., all FORTRAN 77 variables, C static variables
- Advantages: efficiency (direct addressing), history-sensitive subprogram
support
- Disadvantage: lack of flexibility (no recursion)
e Categories of variables by lifetimes
- Stack-dynamic--Storage bindings are created for variables when their
declaration statements are elaborated.
- Ifscalar, all attributes except address are statically bound
e.g., local variables in C subprograms and Java methods
?;\ dvantage: allows recursion; conserves storage
'h sadvantages:
‘.;\j‘ \c» Overhead of allocation and deallocation
[8° Subprograms cannot be history sensitive
' ‘ Inefficient references (indirect addressing)

24

SRRCET/M.E/CSE/NOTES s amn

3.6 ML
e A static-scoped functional language with syntax that is closer to Pascal tham =
LISP
e Uses type declarations, but also does type inferencing to determine the types o
undeclared variables :
e It is strongly typed (whereas Scheme is essentially typeless) and has no type
coercions
¢ Includes exception handling and a module facility for implementing abstract
data types
e Includes lists and list operations
ML Specifics
e Function declaration form:
fun name (parameters) = body;
e.g., fun cube (x:int) =x * x * x;
- The type could be attached to return value, as in
funcube (x) :int=x*x *x;
- With no type specified, it would default to
int (the default for numeric values)
- User-defined overloaded functions are not allowed, so if we wanted a cube
function for real parameters, it would need to have a different name
- There are no type coercions in ML
* ML selection
if expression then then_expression
else else_expression

where the first expression must evaluate to a Boolean value
e Pattern matching is used to allow a function to operate on different parameter
forms
fun fact(0) = 1
| fact(n : int) : int =n * fact(n - 1)
e Lists
Literal lists are specified in brackets
13, 5. 7]
[] is the empty list
CONS is the binary infix operator, ::
4 :: [3, 5, 7], which evaluates to [4, 3, 5, 7]
CAR is the unary operator hd
CDR is the unary operator tl
fun length([]) =0
| length(h :: t) = 1 + length(t);
fun append(([], lis2) = lis2
| append(h :: t, lis2) = h :: append(t, lis2);
al statement binds a name to a value (similar to DEFINE in Scheme)
distance = time * speed;
5 \is the case with DEFINE, val is nothing like an assignment statement in
mperative language

ption Handling in ML

e The following code prompts the user to enter a numeric literal, and stores the

corresponding real number in num:

while True:

oy

response = raw_input(“Enter a numeric literal:)

num = float{response)

28

PR

b |

TS

ey

ik

SRRCET/M.E/CSE/NOTES/CP5501-PPL

break
except ValueError:
print "Your response was ill-formed."

This while-command keeps prompting until the user enters a well-formed
numeric literal. The library procedure raw_input(...) displays the given prompt
and returns the user's response as a string. The type conversion
“float(response)” attempts to convert the response to a real number. If this type
conversion is possible, the following break sequencer terminates the loop. If not,
the type conversion throws a ValueError exception, control is transferred to the
ValueError exception handler, which displays a warning message, and finally
the loop is iterated again.

3.8 Haskell-F#

¢ Similar to ML (syntax, static scoped, strongly typed, type inferencing, pattern
matching)

e Different from ML (and most other functional languages) in that it is purely
functional (e.g., no variables, no assignment statements, and no side effects of
any kind)

Syntax differences from ML
fact0 =1
factn=n* fact (n - 1)
fib 0 = 1
fibl1=1
fib(n+2) =fib(n+1)+fibn
3.9 Functional Programming with Lists
e List notation: Put elements in brackets
e.g., directions = ["north", "south"”, "east", "west"]
e Length: #
e.g., #directions is 4
¢ Arithmetic series with the .. operator
e.g.,[2,4.10]is[2, 4, 6, 8,10]
e Catenation is with ++
e.g., [1,3] ++[5, 7] resultsin [1, 3,5, 7]
e CONS, CAR, CDR via the colon operator (as in Prolog)
e.g. 1:[3,5, 7] results in [1, 3, 5, 7]
Factorial Revisited
product [] = 1
product (a:x) = a * product x
fact n = product [1..n]
List Comprehension
¢ Setnotation
» List of the squares of the first 20 positive integers: [n *n | n « [1..20]]
o All of the factors of its given parameter:
® factorsn =[i | i« [1l.ndiv 2],
n mod i == 0]
Lazy Evaluation

e A language is strict if it requires all actual parameters)

» A language is nonstrict if it does not have the strict regidre

* Nonstrict languages are more efficient and allow some meresting cag

0 oY
. 3930/

Lazy evaluation - Only compute those values that are neceéssary =~

Positive numbers
positives = [0..]

e Determining if 16 is a square number
29

SRRCET/M.E/CSE/NOTES '(PS501 771

member [] b = False
member{a:x) b={a == b)|jmember x b
squares=[n*n| n < [0.]]
member squares 16
Member Revisited
e The member function could be written as:
member [] b = False
member(a:x) b=(a == b)||member x b
e However, this would only work if the parameter to squares was a perfect square;
if not, it will keep generating them forever. The following version will always
work:
member2 (m:x) n
| m <n=member2xn
| m ==n="True
| otherwise = False

3.10 List Structures

e Other basic data structure (besides atomic propositions we have already seen):
list
e Listis a sequence of any number of elements
e Elements can be atoms, atomic propositions, or other terms (including other
lists)
[apple, prune, grape, kumgquat]

[] (empty list)
[X | Y] (head X and tail Y)

Append Example
append([], List, List).
append([{Head [List_1], List_2, [Head | List_3]) :-
append (List_1, List 2, List_3).

Reverse Example

reverse([], []).

reverse([Head | Tail], List) :-
reverse (Tail, Result),
append (Result, [Head], List).

3.11 List Manipulation
A software system often consists of a number of subsystems controlled or
connected by a script. Scripting is a paradigm characterized by:
Use of scripts to glue subsystems together.
Rapid development and evolution of scripts.
Modest efficiency requirements.
Very high-level functionality in application-specific areas.

Key Concepts
__The following concepts are characteristic of scripting languages:

ry high-level graphical user interface support.
amic typing.

mplification of Expressions

0 APYTHON was designed in the early 1990s by Guido van Rossum.It has been
used to help implement the successful Web search engine GOOGLE, and in a
variety of other application areas ranging from science fiction (visual effects for
the Star Wars series) to real science (computer-aided design in NASA).

30

SRRCET/M.E/CSE/NOTES/CPS 501-PPL

VALUES AND TYPES

3.12 Storage allocation for Lists

PYTHON has a limited repertoire of primitive types: integer, real, and complex
numbers.

It has no specific character type; single-character strings are used instead. Its
boolean values (named False and True) are just small integers.

PYTHON has a rich repertoire of composite types: tuples, strings, lists,
dictionaries and objects. A PYTHON list is a heterogeneous sequence of values.

A dictionary (sometimes called an associative array) is a heterogeneous mapping
from keys to values, where the keys are distinct immutable values.

The following code illustrates tuple construction:
date = 1998, "Nov", 19

Now date[0] yields 1998, date[1] yields “Nov”, and date[2] yields 19.

The following code illustrates two list constructions, which construct a
homogeneous list and a heterogeneous list, respectively:
primes=[2,3,5,7,11]
years = ["unknown", 1314, 1707, date[0]]
Now primes[0] yields 2, years[1] yields 1314, years[3] yields 1998, “years[0] =
843" updates the first component of years, and so on, Also,
“years.append(1999)” adds 1999 at the end of years.

PYTHON supports global and local variables.
Variables are not explicitly declared, simply initialized by assignment. After
initialization, a variable may later be assigned any value of any type.
PYTHON’s repertoire of commands include assignments, procedure calls,
conditional (if- but not case-) commands, iterative (while- and for-) commands
and exception-handling commands.
However, PYTHON differs from C in not allowing an assignment to be used as an
expression.
PYTHON additionally supports simultaneous assignment.
For example:
y, m, d = date

assigns the three components of the tuple date to three Separate variables.

Also:
m,n=nm

concisely swaps the values of two variables m and n. (Actually, it first
constructs a pair, then assigns the two components of the pair to the two left-
side variables)
PYTHON if- and while-commands are conventional.
PYTHON for-commands support definite iteration.
We can easily achieve the conventional iteration over a sequence of numbers by
using the library procedure range(m,n), which returns a list of integers from m
through n-1.

PYTHON supports break, continue, and return sequencers. It also supports
exceptions, which are objects of a subclass of Exceppi®n, an i
values. -

31

SRRCET/M.E/CSE/NOTES /(P5501 791

UNIT-4
LOGIC PROGRAMMING

4.1 Logic Programming Introduction
IBASICS

* Logic programming languages, sometimes called declarative programming
languages
¢ Express programs in a form of symbolic logic
Use a logical inferencing process to produce results
e Declarative rather that procedural:
= Only specification of results are stated (not detailed procedures for producing
them)
FACTS
Proposition
* Alogical statement that may or may not be true
- Consists of objects and relationships of objects to each other

Symbolic Logic
* Logic which can be used for the basic needs of formal logic:
- Express propositions
- Express relationships between propositions
- Describe how new propositions can be inferred from other propositions
¢ Particular form of symbolic logic used for logic programming called predicate
calculus
SYNTAX
Object Representation
e Objects in propositions are represented by simple terms: either constants or
variables
e Constant: a symbol that represents an object
e Variable: a symbol that can represent different objects at different times
- Different from variables in imperative languages

Compound Terms
e Atomic propositions consist of compound terms
e Compound term: one element of a mathematical relation, written like a
mathematical function
- Mathematical function is a mapping
: - Can be written as a table

Parts of a Compound Term
e Compound term composed of two parts
Functor: function symbol that names the relationship

Forms.e¥a Proposition
e Propositions can be stated in two forms:
- Fact: proposition is assumed to be true

32

R TR m—=

SRRCET /MLE/CSE/NOTES PS3an-rFrmL

- Query: truth of proposition is to be determined
* Compound proposition:

- Have two or more atomic propositions

- Propositions are connected by operators

ULES
Logical Operators
Name | Symbol | Example Meaning |

Negation - —a anotb Wl
Conjunction N amb aandb i
Disjunction v aub aorb
Equivalence = a=b a is equivalent to b
Imblicati = a>b a implies b

picasion = ach b implies a

Quantifiers
Name Example Meaning
universal VX.P For all X, P is true
' existential IX.P There exists a value of X such that P is true

Clausal Form
* Too many ways to state the same thing
* Use a standard form for propositions
® Clausal form:
- B1UB2 U..UBn c A1n A2 N..~ Am
- means if all the As are true, then at least one B is true
* Antecedent: right side
¢ Consequent: left side
Predicate Calculus and Proving Theorems
* A use of propositions is to discover new theorems that can be inferred from
known axioms and theorems
* Resolution: an inference principle that allows inferred propositions to be
computed from given propositions
Resolution
* Unification: finding values for variables in propositions that allows matching
process to succeed
* Instantiation: assigning temporary values to variables to allow unification to
succeed
* After instantiating a variable with a value, if matching fails, may need to
backtrack and instantiate with a different value

DPERATIONAL SEMANTICS
* Basis for logic programming
e When propositions used for resolution, only restricted form can be used
* Horn clause - can have only two forms
- Headed: single atomic proposition on left side
- Headless: empty left side (used to state facts)
* Most prepositions can be stated as Horn clauses

33

SRRCET/M.E/CSE/NOTES/CP5501-PPL

4.2 An Overview of Logic Programming
* Declarative semantics
- Thereis asimple way to determine the meaning of each statement
- Simpler than the semantics of imperative languages
* Programming is nonprocedural
- Programs do not state now a result is to be computed, but rather the form of
the result

4.3 The Origins of Prolog
e University of Aix-Marseille
- Natural language processing
* University of Edinburgh
- Automated theorem proving

ft-5 The Basic Elements of ProLog CO4
Edinburgh Syntax
Term: a constant, variable, or structure
Constant: an atom or an integer
Atom: symbolic value of Prolog
Atom consists of either:
- astring of letters, digits, and underscores begin ning with a lowercase letter
- astring of printable ASCII characters delimited by apostrophes
Terms: Variables and Structures
* Variable: any string of letters, digits, and underscores beginning with an
uppercase letter
* [Instantiation: binding of a variable to a value
- Lasts only as long as it takes to satisfy one complete goal
® Structure: represents atomic proposition
functor(parameter list)
Fact Statements
¢ Used for the hypotheses
e Headless Horn clauses
female(shelley).
male(bill).
father(bill, jake).
Rule Statements
e Used for the hypotheses
e Headed Horn clause
» Right side: antecedent (if part)
- May be single term or conjunction
¢ Left side: consequent (then part)
- Must be single term
* (Conjunction: multiple terms separated by logical AND operations (implied)
Example Rules
ancestor(mary,shelley):- mother(mary,shelley).
n use variables (universal objects) to generalize meaning:
parent(X,Y):- mother(X,Y).
parent{X,Y):- father(X,Y).
i (‘-:1 randparent(X,Z):- parent(X,Y), parent(Y,Z).
) Sibling(X,Y):- mother(M,X), mother(M,Y),
father(F,X), father(FY).

ents
eorem proving, theorem is in form of proposition that we want system to

34

g
i

SRRCET/M.E/CSE/NOTES/CP5501-PPL

prove or disprove - goal statement

e Same format as headless Horn
man(fred)

¢ Conjunctive propositions and propositions with variables also legal goals
father(X,mike)

Inferencing Process of Prolog
* Queries are called goals

* Ifagoal is a compound proposition, each of the facts is a subgoal
* To prove a goal is true, must find a chain of inference rules and/or facts.

For goal Q:
B:-A
C:-B
(-,';)‘:- P

* Process of proving a subgoal called matching, satisfying, or resolution
Approaches
* Bottom-up resolution, forward chaining
- Begin with facts and rules of database and attempt to find sequence that
leads to goal
- Works well with a large set of possibly correct answers
* Top-down resolution, backward chaining
- Begin with goal and attempt to find sequence that leads to set of facts in
database
- Works well with a small set of possibly correct answers
¢ Prologimplementations use backward chaining
Subgoal Strategies
* When goal has more than one subgoal, can use either
- Depth-first search: find a complete proof for the first subgoal before working
on others
- Breadth-first search: work on all subgoals in parallel
e Prolog uses depth-first search
- Can be done with fewer computer resources
Backtracking

e With a goal with multiple subgoals, if fail to show truth of one of subgoals,
reconsider previous subgoal to find an alternative solution: backtracking

* Begin search where previous search left off

 Can take lots of time and space because may find all possible proofs to every
subgoal

Simple Arithmetic

e Prolog supports integer variables and integer arithmetic

* is operator: takes an arithmetic expression as right operand and variable as left
operand
AisB/17+C
¢ Not the same as an assignment statement!
Example
speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time({chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),

35

e e Ll

e e

SRRCET/M.E/CSE/NOTES/CP5501-PPL

time(X,Time),
Y is Speed * Time.
Trace
» Built-in structure that displays instantiations at each step
» Tracing model of execution - four events:
- Call (beginning of attempt to satisfy goal)
- Exit (when a goal has been satisfied)

- Redo (when backtrack occurs)
- Fail (when goal fails)
Example

likes(jake,chocolate). v

likes(jake,apricots). Eala __Fail
likes(darcie,licorice).

likes(darcie,apricots).

likes (jake, X)

Exit Redo
trace. v
likes(jake,X), Gt ==t
erS(dG!’CI'E,X). likes (daxcia, X)
F:::!_ t Redo

4.6 Deficiencies of Prolog
¢ Resolution order control
¢ The closed-world assumption
e The negation problem
¢ Intrinsic limitations

4.7 Applications of Logic Programming - CO4
* Relational database management systems

e Expert systems

¢ Natural language processing

36

e —

SRRCET /ML.E/CSE/NOTES/CP5501-PPL

5.1 Parallelism in Hardware-Streams

UNITV
CONCURRENT PROGRAMMING

Implicit Synchronization
* Implicit synchronization is done at the start and may be done at the end of a test case by the
MTC. The corresponding CREATE constructs and DONE events can be generated automatically
by a tool.
e Further synchronization is needed if it has to be guaranteed that the first send event happens
after the creation of all PTCs or if the PTCs should indicate their termination to the MTC. For

these cases, one of the explicit synchronization mechanisms has to be used.

5.2 Concurrency as interleaving

* Concurrency can occur at four levels:
- Machine instruction level
- High-level language statement level
- Unit level
- Program level

* Because there are no language issues in instruction- and program-level
concurrency, they are not addressed here

Multiprocessor Architectures
* Late 1950s - one general-purpose processor and one or more special purpose
processors for input and output operations
e Early 1960s - multiple complete processors, used for program-level concu rrency
* Mid-1960s - multiple partial processors, used for instruction-level concurrency
e Single-Instruction Multiple-Data (SIMD) machines
e Multiple-Instruction Multiple-Data (MIMD) machines
- Independent processors that can be synchronized (unit-level concurrency)
Categories of Concurrency
* A thread of control in a program is the sequence of program points reached as
control flows through the program
e Categories of Concurrency:

- Physical concurrency - Multiple independent processors (multiple threads of
control)

- Logical concurrency - The appearance of physical concurrency is presented by
time-sharing one processor (software can be designed as if there were
multiple threads of control)

e Coroutines (quasi-concurrency) have a single thread of control
Motivations for Studying Concurrency
* Involves a different way of designing software that can be very useful— many
real-world situations involve concurrency

* Multiprocessor computers capable of physical concurrency widely used

5.3 Liveness Properties
Liveness and Deadlock
e Liveness is a characteristic that a program unit may o
- In sequential code, it means the unit will eventually
e In a concurrent environment, a task can easily lose its li

37

SRRCET/M.E/CSE/NOTES/CP5501-PPL

e Ifall tasks in a concurrent environment lose their liveness, it is called deadlock
Design Issues for Concurrency

» Competition and cooperation synchronization

* Controlling task scheduling

* How and when tasks start and end execution

* How and when are tasks created
Methods of Providing Synchronization

e Semaphores

e Monitors

¢ Message Passing

5.4 Safe Access to Shared Data
1) Immutable objects are by default thread-safe because their state can not be modified once created.

Since String is immutable in Java, it's inherently thread-safe.

2) Read-only or final variables in Java are also thread-safe in Java.

3) Locking is one way of achieving thread-safety in Java.

4) Static variables if not synchronized properly become a major cause of thread-safety issues.

5) Example of thread-safe class in Java: Vector, Hashtable, ConcurrentHashMap, String, etc.

6) Atomic operations in Java are thread-safe like reading a 32-bit int from memory because it’s an
atomic operation it can’t interleave with other threads.

7) local variables are also thread-safe because each thread has there own copy and using local
variables is a good way to write thread-safe code in Java.

8) In order to avoid thread-safety issues minimize the sharing of objects between multiple threads.
9) Volatile keyword in Java can also be used to instruct thread not to cache variables and read from

main memory and can also instruct JVM not to reorder or optimize code from threading perspective.

5.5 Concurrency in Ada
¢ The Ada 83 Message-Passing Model
- Ada tasks have specification and body parts, like packages; the spec has the
interface, which is the collection of entry points:
task Task_Example is
entry ENTRY_1 (Item : in Integer);
end Task_Example;
Task Body
e The body task describes the action that takes place when a rendezvous occurs
* A task that sends a message is suspended while waiting for the message to be
accepted and during the rendezvous
* Entry points in the spec are described with accept clauses in the body accept
entry_name (formal parameters) do

m end entry_name

G
‘fiﬁ. Task Body
Shask body Task_Example is

accept Entry_1 (Item: in Float) do
38

SRRCET/M.E/CSE/NOTES/CP5501-PPL

end Entry_1;
end loop;
end Task_Example;

5.6 Synchronized Access to Shared Variables

e A task or process is a program unit that can be in concurrent execution with
other program units
s Tasks differ from ordinary subprograms in that:
- A task may be implicitly started
- When a program unit starts the execution of a task, it is not necessarily
suspended
- When a task's execution is completed, control may not return to the caller
e Tasks usually work together
Two General Categories of Tasks
s Heavyweight tasks execute in their own address space
e Lightweight tasks all run in the same address space
e A task is disjoint if it does not communicate with or affect the execution of any
other task in the program in any way
Task Synchronization
e A mechanism that controls the order in which tasks execute
e Two kinds of synchronization
- Cooperation synchronization
- Competition synchronization
e Task communication is necessary for synchronization, provided by:
- Shared nonlocal variables
- Parameters
- Message passing
Kinds of synchronization
e Cooperation: Task A must wait for task B to complete some specific activity
before task A can continue its execution, e.g., the producer-consumer problem

e Competition: Two or more tasks must use some resource that cannot be
simultaneously used, e.g., a shared counter
- Competition is usually provided by mutually exclusive access (approaches
are discussed later)

Scheduler
¢ Providing synchronization requires a mechanism for delaying task execution
e Task execution control is maintained by a program called the scheduler, which
maps task execution onto available processors
Task Execution States
e New - created but not yet started
e Ready - ready to run but not currently running (no ava)
e Running
e Blocked - has been running, but cannot now continu
event to occur)
e Dead - no longer active in any sense

for some

-

39

SRRCET/M.E/CSE/NOTES/CP5501-PP1L

5.7 Synthesized Attributes, Attribute Grammar

Attribute Grammar

Attribute grammar is a special form of context-free grammar where some additional information
(attributes) are appended to one or more of its non-terminals in order to provide context-sensitive
information. Each attribute has well-defined domain of values, such as integer, float, character, string,
and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar and it can help
specify the syntax and semantics of a programming language. Attribute grammar (when viewed as a
parse-tree) can pass values or information among the nodes of a tree.

Example:

E=-E+T
{

E.value = E.value + T.value
}

The right part of the CFG contains the semantic rules that specify how the grammar should be
interpreted. Here, the values of non-terminals E and T are added together and the result is copied to
the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of parsing and
evaluated at the time of assignment or conditions. Based on the way the attributes get their values,
they can be broadly divided into two categories : synthesized attributes and inherited attributes.

Synthesized attributes

These attributes get values from the attribute values of their child nodes. To illustrate, assume the
following production:

S - ABC

If S is taking values from its child nodes (A,B,C), then it is said to be a synthesized attribute, as the
values of ABC are synthesized to S.

As in our previous example (E - E + T), the parent node E gets its value from its child node.
Synthesized attributes never take values from their parent nodes or any sibling nodes.

5.8 Natural Semantics- Denotational Semantics
Semantics of state

o State (such as a heap) and simple imperative features can be straightforwardly modeled in the
denotational semantics described above

* .Thekeyideais to consider a command as a partial function on some domain of states. The
meaning of "x:=3" is then the function that takes a state to the state with 3 assigned to x. The
sequencing operator ";" is denoted by composition of functions. Fixed-point constructions are
then used to give a semantics to looping constructs, such as "while".

Denotations of data types

ogramming languages allow users to define recursive data types. For example, the
), 0f numbers can be specified by

datatype list = Cons of nat * list | Empty

40

SRRCET/M.E/CSE/NOTES/CP5501-PPL

Denotational semantics of sequentiality

The problem of full abstraction for the sequential programming language PCF was, for a long
time, a big open question in denotational semantics. The difficulty with PCF is that it is a very
sequential language. For example, there is no way to define the parallel-or function in PCF. It is
for this reason that the approach using domains, as introduced above, yields a denotational
semantics that is not fully abstract.

This open question was mostly resolved in the 1990s with the development of game
semantics and also with techniques involving logical relations.[6] For more details, see the
page on PCF.

Denotational semantics as source-to-source translation

L]

Itis often useful to translate one programming language into another. For example, a
concurrent programming language might be translated into a process calculus: a high-level
programming language might be translated into byte-code.

5.9 Lexically Scoped Lambda Expressions

This section deals only with functional data structures that cannot change. Conventional
imperative programming languages would typically allow the elements of such a recursive list
to be changed.

For another example: the type of denotations of the untyped lambda calculus is
datatype D =D of (D = D)

The problem of solving domain equations is concerned with finding domains that model these
kinds of datatypes. One approach, roughly speaking, is to consider the collection of all domains
as a domain itself, and then solve the recursive definition there. The textbooks below give
more details.

‘Polymorphic data types are data types that are defined with a parameter. For example, the

type of « lists is defined by
datatype « list = Cons of a * a list | Empty
Lists of natural numbers, then, are of type nat list, while lists of strings are of string list.

Some researchers have developed domain theoretic models of polymorphism. Other
researchers have also modeled parametric polymorphism within constructive set theories.
Details are found in the textbooks listed below.

Arecent research area has involved denotational semantics for object and class based
programming

semantics for programs of restricted complexity

Following the development of programming languages based on linear logic, denotational
semantics have been given to languages for linear usage (see e.g. proof nets, coherence spaces)
and also polynomial time complexity.

5.10 A Calculator in Scheme
e Syntax. Legal Calculator expressions are either numbers or well-formed Scheme

lists that have an operator symbol as their first element. The latter are interpretered
as call expressions. Legal operator symbols include +, -, = an¢
Evaluation. The evaluation procedure for each operator is des¢fibed-+mHi&;? gture notes
section about the Scheme-Syntax Calculator. \ '

41

o 111 S

SERCET/M.E/CSE/NOTES/CP5501-PPL

Read-Eval-Print. When run interactively, the interpreter reacs Scheme expressions (without
quotation or dotted lists), evaluates them, and prints the resui=s.

>2

2

>(+12(*34)

15

5.11 An Interpreter-Recursive Functions

An interpreter is the simplest way to have actions expressed by a source program to be
performed. This is done by processing the AST.

An interpreter considers nodes of the AST in the correct order and performs the prescribed
actions for those nodes by the language semantics.

Unlike compiling, this requires inputs to be present.

Ideally interpreters work just like CPUs, the difference is that while CPUs work on instruction
sets, interpreters work on ASTs.

Interpreters can either be:

recursive - working directly on the AST thus less preprocessing
iterative - working on a linearized AST.

Recursive Interpreters.

A recursive interpreter will have a routine for each node type in the AST. These routines call
other similar routines.

This is possible since the meaning of language constructs is defined as a function of the meaning
ofits components. i.e The meaning of an if-statement is defined by the meaning of the condition,
the then-part and the else-part including a short paragraph in the manual tying them together.

42

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INTERNAL MARKS STATEMENT

Degree/Branch : M.E/CSE Year/Semester VI
Academic Year : 2020-21

Sub Code & Name : CP5001/Principles of Programming Language

NAME IT1 IT2 | MODEL
S.NO. | REG.NO.
DATE 17321 | 21421 | 10521
88 83 80
1 | 912520405001 | DEVI ABARNA SRIA
72 R e T
2| 912520405002 | GOWTHAMIR
55 | ae = e
3| 912520405003 | PANDI MUTHU C '

] -

i

it a2l

Faculty in Charge HOD Signature

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INTERNAL TEST I - EXAM RESULT ANALYSIS

Department :CSE Date of Exam :17.03.21

Year / Semester 1710 Date of Evaluation :19.03.21

Subject Code/Title :CP5001/Principles of Programming Language

Faculty Name : MR.Ponvasan.P Designation : AP/CSE
Total Strength 23 Present :3 Absent : NIL
Passed v3 Failed : NIL % of Pass : 100%
Description Below 50 50 to 59 60 to 74 75 to 89 90 and Above
No. of Students 1 1 1

Register Number and Name of the Failed Students:

S.No | Reg.No. | Name of Student

NIL

" g

Facuﬁty in-Charge HOD Signature

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INTERNAL TEST Il - EXAM RESULT ANALYSIS

Department 1CSE Date of Exam :21.04.21

Year / Semester /1 Date of Evaluation : 23.04.21

Subject Title : Internet Programming Subject Code :CP5001

Faculty Name : MR.Ponvasan.P Designation : AP/CSE

Total Strength 3 Present :3 Absent : NIL

Passed 22 Failed : NIL % of Pass : 100%

Description Below 50 50- to 59 60 to 74 75 to 89 90 and Above ..

No. of Students 1 1 1

| Register Number and Name of the Failed Students:

S.No Reg. No. Name of Student
1. — NI

Faculty in-Charge HOD Signature

SRI RAAJA RAAJAN COLLEGE OF ENGINEERING & TECHNOLOGY
AMARAVATHIPUTHUR POST, KARAIKUDI - 630301

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MODEL- EXAM RESULT ANALYSIS
Department :CSE Date of Exam :10.05.21
Year / Semester /1 Date of Evaluation :13.05.21
Subject Title : Internet Programming Subject Code : CP5001
Faculty Name : MR.Ponvasan.P Designation :AP/CSE
Total Strength .8 Present :3 Absent : NIL
Passed 83 Failed : NIL % of Pass :100%
Description Below 50 50 to 59 60 to 74 75 to 89 90 and Above
No. of Students 2 1
Register Number and Name of the Failed Students:
S.No | _Reg.No. | Name of Student

NIL

Faculty in-Charge

147 | Yeal 2022

wahp 0011 .
155 g50 - 1057

Design Engineering e 119289

P

Case Study: Design Engineering for Ear

Biometric Model

' #i',
Angaverkenni N'. Minarva Devi K7, Achabashini R Devt Alarma Sri A Aanjana Devi

" Aanjankumar &' Anitha Thangatamy
P77 e . Y . TP
*'Gn RazjaRanian College of Engincering and technelogy, Karaikudi, Tamiln aeda,
; :
Alagappa Umiversity, K arnikuudi, Tamiln sdu fndia

Arina umversiv-C TG ampuLImmllwln.lmlm)
1ﬂ,:+;|:-,1lm¢h|n|';;._gm-ul CrnT
athangasamy e g

l’!d??

sevarlkanmi arnant
Angavarkanmibe] 3@ gmml com’ minarvadevi® R gmad con abart

. = n . [;
12404 @gman com” dovivureeh 941 gmml com’ iteee 1990 g gmail corm anith

| com

Akstract:

Biometric based authentication is the wide spread concept of identifying the personal
charactenstics while offenng certamn services, There are huge varictics of brometsnc
authenticaton approaches arc proposed by various scientific researches and developers hike
fingerprints, face biometric, s, DNA, palm and Ear. While comparing with other biometne
technique Ear biometne gets more attention than others. Because the car-based authentication
has various advantages and offers sccurity and reliability than the other biometrics. This paper
investigates the various existing models in ear based biometric and tabulate its performance
analysis for casier implementations.

Keywords: Ear, Biometrics, Ear Biometric, Review, Performance Analysis, Evaluation of Ear

Biometrics, PCA.

L INTRODUCTION
In this modern era, biometric concepls are introduced in wide vanety
our traditional user authentication called Login. The usual login
ords. These models are replaced by variety of secunty
The Biometric technology is the modern approach
which can be utilized i user authentication to offer high security. The biometnes can test the
users and authenticate the users by their physical characteristics with the help of computers,
sensors and machine learning devices. The Biometric identification is separated into vanous
models like Iris, Palm, Fingerprint, Face, DNA and Ear. Far based authentication is the newest
wend in human authentication and it gets more attention because of its unique features and

of applications and it is the

best replacement models for
models included the user name and passw
{eatures because of the sccurity weakness.

(2850} PRINCAVAL
Gri Raaja Raggan Celfons 21 5agg. B le
Amaravatiapuier, -« e - H30 3N

Sivaganian uiss lanni Nadu

{
4
[JARSE

International Jounnal of

Advance Research in SCIENC!
and ENGINEERING

ISSN(O) : 2319-8%74, ISSN(P) : 2719-8746

This is to certify that
N.Rajeswari

has published o paper fitle

Maximum Power Point Tracking Control Solar Power
Generation Using Fuzzy Network

- in |
International Journal of Advance Research in Science and Engineering
Volume No.06, Special Issue No.(01), Dec 2017, ICASES-17

This paper can be downlouded from the following link: www.ijorse.com

Sil Pn" "' fd'l".'-.'. 2ol engs. o \ \
| P\'T\d.fa\‘uimp idur, Karalud

T Edﬂor n [h|ef Sivagangal stL Tamil Nadu
International Journal of Advance Research m‘Suenre and Engineering

website: www.ijarse.com

E-mail: submission@ijarse.com
1JARSE Team wishes all the best for your bright future

CY: <canned with OKEN Scan

Intelligent Automation & Soft I : Tech Science Press

DOI: 10.32604/iasc.2023.028552
Article

An Efficient Honey Badger Optimization Bascd Solar MPPT Under partial
Shading Conditions

N. Rajeswari'" and S. Venkatanarayanan’

1

Departm i . i

- epartment of Electrical and Electronics Engineering, Sri Raja Raajan College of Engineering and Technology, Sivagangd,
2 . Tamilnadu, 630301, India

Departm : . 5 : :
epartment of Electrical afd Electronics Engineering, K. L. N. College of Engineering, Sivagangal,
Corresponding Author: N. Rajeswari. Email: rajisugumar22@gmail.com

Received: 12 February 2022; Accepted: 24 March 2022

Tamilnadu, 630612, India

Abstract: Due to the enormous utilization of solar energy, the photovoltaic (PV)
system is used. The PV system is functioned based on 8 maximum power point
(MPP). Due to the climatic change, the Partial shading conditions have occurred
under non-uniform irradiance conditions. In the PV system, the global maximum
power point (GMPP) is complex to track in the P-¥ curve due to the Partial shad-
ir}g. Therefore, several tracking processes are performed using various methods
like perturb and observe (P & O), hill climbing (HC), incremental conductance
(INC), Fuzzy Logic, Whale Optimization Algorithm (WOA), Grey Wolf Optimi-
zation (GWO) and Flying Squirrel Scarch Optimization (FSSO) etc. Though, the
MPPT is not so efficient when the partial shading is increased. To increase the
~ efficiency and convergences in MMPT, the Honey Badger optimization (HBO)
algorithm is presented. This HBO model is motivated by the excellent foraging
behaviour of honey badgers. This HBO model is used to achieve the best solution
in GMPP tracking and speed convergence. The HBO methodology is also com-
pared with prior P&O, WOA and FSSO methods using MATLAB. Therefore,
the experiment shows that {he HBO method is performed a higher tracking than

all prior methods.)

Keywords: PV system; gmpp tracking; convergence; honey badger optimization;
digging and honey phase

1 Introduction

Solar energy is the most essential source to provide a clean environment and a better gain in economic.
Nowadays photovoltaic (PV) systems are acted as a main solar source for electricity generation. But in the
PV system, the conversion of insolation into electricity is more difficult and has minimum efficiency [1].
Solar radiation and atmospheric temperature are the environmental factors that are used for power
generation in a PV system. The characteristics of power-voltage (P-V) and current-voltage (I-V) are

affected by these environmental factors.

— This work is licensed under a Creative Commons Attribution 4.0 International License, tyl}ich
| permits unrestricted use, distributionsand reproduction in any medium, provided the original

gl work is properly cited.

CONTENTS

Yeart 2018, Volumet 4, lssues 10

Research Articles ' IR
¥ ' U auaasesrente®®” et
- Power Q““I‘W Analysis in a Bulk High-tenslon Industry at Theni, ramil Nad
_ Sahayaraj Arokyasanyy, S. Venkatanarayanan
Design and Implementation of Maximum Point Power Tracldng controller for‘ idiseen AR RR IR 6

Gri_d*connected Photovoltaie System and Analyzing its Performances e
C. Karuppasamy.\. M. Ravi Kumay; S, Venkatanardayanan

Opﬁl:ﬂum _Lﬂcatiml of Distributed System Using Shuffled Frog Lea
N. Rajeswary, S. Venkatanarayanan, R. Karpaga Priyq, S. Kannan 15

Internet of Things Based Monitoring of Fertilizer and Moisture in Agricultur B T
M. Seema, S. Venkatanarayanan, S, M. Kannan

A Novel Method of Detection and Classification of Diabetic Retinopathy in ' e L.
Fundus Imagery ""'"“'“'""0"HIuﬂnulullluunuunuuuuunu"unu-uunun.a.uu.u.."uuuuu-uulull"

P Bhuvaneswari, R. Banumathi, S. Venkatanarayanan, S. M. Kannan

voes 10

P TTL L

ping Algorithim «eoe

)) iceviair 2%
Analysis of Various Types of Balanced Voltage Sags

K. R. Ramela, S. Parameswari, S. Venkatanarayanan, S. M. Kannan

Industrial Energy Audit and Improve Power Quality in Solar ENergy SYSteIml ec.esmeeenesassassnnttt®® 29
S. Sivakumar; S. Venkatanarayanan, S. M. Kannan

Performance Analysis of Fuzzy Logic Controller-based de-Link Shunt 33

esssasssnsenrnssesd

- Compensator in Single-Phase Grid-Connected MOdeuoueveeecssserussnssanensssassnezsnsssssts
M. Nagajothi, S. Venkatanarayanan, N. Rajeswari, S. M. Kannan

Transform-Based Texture Feature EXtraction TECHNIGUESccceisesmsassssssssssssssnesssssssasssasnsasimasssssss 38 .
C. Udhaya, R. Banumathi, S. Venkatanarayanan, S. M. Kannan

Internet of Things-Based Health Monitoring System Usin
- Microelectromechanical Systems’ Sensorccouue.

L1 1] .-III'll-ll.‘..‘.!lll.ill. 44
C. Gayathri, S. Venkatanarayanan, R. Karpaga Priya, M. Kannan

BsEsMENEIRERIEEESESSITRIRIRRERSARSARSRRER

Sequential Loading of Backup Generator with Load Sharing «ieeieiieeseesessncesssnnnesssaissassonsstianssion 56
P K. Arun'Kumar, S. Venkatanarayanan, R. Pragadeesh, S. Nikhil, R. Prasanna, :
A. Prasanna Venkatesh, S. M. Kannan

Gender Classification Using Histogram of Oriented Gradients-Support Vector
MAaChine ClasSifier....coiessresssssisssssnssnssnssnissssssinsmnninnisnssasssissssssesssnissstnssssansease sxenennes assenersasassasasisiionss O
S. Gomathi Meena, K. G. Srinivasagan

Analysis and Development of Music Rhythm for LED Flashlight Using Microcontrollers 69
M. Muthumeenakshi, B. Ishuwarya, N. Andal, A. M. Gayathri, S. Venkatanarayanan, S. M. Kannan

Multi-constraint Fuzzy-based Wireless Sensor Node Communication for Smart Grid........cccssesnns 72
‘R. Karpaga Priya, S. Venkatanarayanan, N. Rajeswari, S. M. Kannan

Real-Time Detection of Retinal Detachment and Exudates Using Digital Fundus
Image with Superpixel Multi-Feature Classificationu...cuuenisiassisisnen B e Ry
R. Priyanka, J. Kanimozhi, Vengat Narayanan, P Vasuki

Investigations on Severity Level for Diabetjg,Macqlppathy Based on the
Locaﬁoﬂ of Lesions T .".T-'{:mﬁfﬁﬁh!\. T T e T L R R R L R T SYTITIRI I L] 82

i manl{\aﬂ\;\
\ W

Asian J Appl Res | 2018:4(10)

Optimum

Shufﬂed Fig cation of Distributed System Using
5 Leaping Algorithm

S. v ;
i cnkm“““m)'mmn‘, R. Karpaga Priya?, 8. Kannan?

} pectronics Engincering, Sri Raaja Raajan College of Engineering and

N. Rajeswar

Asian Jou¥'

ng, Siy Nadlf’ "”‘f‘:‘h *Department of Electrical and Electronics E
Co!lcg;ast;g‘gmf m”_'” Nadu, India, *Department of Llectronics and
O Engineering, Madurai, Tamil Nadu, India

Res
ﬂﬂl O[Appljﬁel:/lm“r,zﬂ]_g,l(}.ﬂet

0.20
noh hllpl/}ﬂx.llﬂl.ﬂl‘gfll

ngineering,
| Comimunication

~ Addreas for

(__-____'—--——__________——__
ABSTRACT

Thj..s er - '
Paper presents a noyel optimization algorithm for optimizing the distributed generation

correspongdence:
N. Rajeswari, Sri Raaja
Raajan College of

Engineering and Technology:

ggiﬁgﬁ;iﬂ: :}[11 derf:gu[aled power system which Improves the stability, "cfiu.cus the los:ses. Amaravathipudur,
DG parameters si © cost of age. The shuffled frog leaping algorithm used to optimize the various Karaikudi, Sivaganga,
DG p. s simultancously, The various parameters taken into consideration are their type, rrlzil Naciu Indla.
on, and size of the DG devices. The simulation was performed on a distribution system e |
L_Eodeled for steady-state studies, '
_.) Wgrdsi

INTRODUCTION

Nowadays, the power electricity demand is growing fast,
and one of the main tasks for power engineers is to generate
electricity from renewable energy sources to overcome this
increase in the energy consumption and at the same time
reduces environmental impact of power generation. The
udlization of renewable sources of vitality has achieved
more noteworthy significance as it advances practical living

-and with a few exemptions (biomass burning) does not
contaminant. Sustainable sources can be utilized as a part
of either little scale applications far from the substantial
estimated age plants or in expansive scale applications in
areas where the asset is plenteous and extensive change
frameworks are utilized.

In any case, issues emerge when the new age is
coordinated with the power dispersion arrange, as the
customary dissemination frameworks have been intended to
work radially, without considering the mix of this new age
later on. In outspread frameworks, the power streams from
upper terminal voltage levels down to clients arranged along
the spiral feeders. In this manner, over current insurance
in spiral frameworks is very clear as the blame current
can just stream one way. With the expansion of infiltration

Optimisation Technique,
Active Power, Statcom,
Distributed Generation
Recelved: 05 February 2018
Accepted: 20* September 2018
Published: 13* October 2018

of distributed generation (DG), circulation systems are
getting to be plainly like transmission systems where age
and load hubs are blended (“*work” framework) and more
intricate assurance configuration is required. In this new
configuration, design considerations regarding the number,
size location, and technology of the DG connected must be
taken into account as the short-circuit levels are affected
and miss coordination problems with protection devices may
arise.

The term DG is frequently used to portray a small-scale
electricity generation. However, what exactly is small-scale
electricity generation? Currently, there is no consensus on -
how the DG should be exactly defined. As shown by the survey
conducted by CIRED, there is no consensus on the definition
of this term. Some countries define DG on the basis of the
voltage level, whereas others start from the principle that DG is
connected to circuits from which consumer loads are supplied
directly. Other countries define DG as having some basic
characteristic (for example, using renewables, cogeneration,
being non-dispatch able, etc.).

This paper presents survey works and a methodology
for optimizing a utility-owned DG size and location on the
basis of economic considerations under existing loading

Copyright ©2017. The Author(s). Published by Arunai publications private Ltd.

@ ‘@ This is an open access article under the CC BY-NC-ND license (hrtp://cregtive,

ns.org/licenses/by-ne-nd/4.0/)

. / n sl l f\ SN -4
: JaAnS oen, et
10 Asian J Appl Res | 2018;4(10) ' Aot Enog. &
i - pafl x (:(11.".651“; D:‘ (;__“ Jr-)ﬁn, L‘:}l
N a i i __I.llﬁ_‘.‘l i-‘- 1a!
S}:ﬁi;ﬂamipud\.vu.l R » o A [ela)!
Fo | R |
y ﬁfii L b

